Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celeste M. Karch is active.

Publication


Featured researches published by Celeste M. Karch.


Biological Psychiatry | 2015

Alzheimer's disease risk genes and mechanisms of disease pathogenesis.

Celeste M. Karch; Alison Goate

We review the genetic risk factors for late-onset Alzheimers disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.


Nature | 2014

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Neuron | 2014

Alzheimer’s Disease Genetics: From the bench to the clinic

Celeste M. Karch; Carlos Cruchaga; Alison Goate

Alzheimers disease (AD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. Several genes have been associated with AD risk for nearly 20 years. However, it was not until the recent technological advances that allow for the analysis of millions of polymorphisms in thousands of subjects that we have been able to advance our understanding of the genetic complexity of AD susceptibility. Genome-wide association studies and whole-exome and whole-genome sequencing have revealed more than 20 loci associated with AD risk. These studies have provided insights into the molecular pathways that are altered in AD pathogenesis, which have, in turn, provided insight into novel therapeutic targets.


Neuron | 2013

GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer’s Disease

Carlos Cruchaga; John Kauwe; Oscar Harari; Sheng Chih Jin; Yefei Cai; Celeste M. Karch; Bruno A. Benitez; Amanda T. Jeng; Tara Skorupa; David Carrell; Sarah Bertelsen; Matthew Bailey; David McKean; Joshua M. Shulman; Philip L. De Jager; Lori B. Chibnik; David A. Bennett; Steve E. Arnold; Denise Harold; Rebecca Sims; Amy Gerrish; Julie Williams; Vivianna M. Van Deerlin; Virginia M.-Y. Lee; Leslie M. Shaw; John Q. Trojanowski; Jonathan L. Haines; Richard Mayeux; Margaret A. Pericak-Vance; Lindsay A. Farrer

Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimers disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.


PLOS ONE | 2012

Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains

Celeste M. Karch; Amanda T. Jeng; Petra Nowotny; Janet Cady; Carlos Cruchaga; Alison Goate

Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS

Celeste M. Karch; Mercedes Prudencio; Duane D. Winkler; P. John Hart; David R. Borchelt

Transgenic mice that model familial (f)ALS, caused by mutations in superoxide dismutase (SOD)1, develop paralysis with pathology that includes the accumulation of aggregated forms of the mutant protein. Using a highly sensitive detergent extraction assay, we traced the appearance and abundance of detergent-insoluble and disulfide cross-linked aggregates of SOD1 throughout the disease course of SOD1-fALS mice (G93A, G37R, and H46R/H48Q). We demonstrate that the accumulation of disulfide cross-linked, detergent-insoluble, aggregates of mutant SOD1 occurs primarily in the later stages of the disease, concurrent with the appearance of rapidly progressing symptoms. We find no evidence for a model in which aberrant intermolecular disulfide bonding has an important role in promoting the aggregation of mutant SOD1, instead, such cross-linking appears to be a secondary event. Also, using both cell culture and mouse models, we find that mutant protein lacking the normal intramolecular disulfide bond is a major component of the insoluble SOD1 aggregates. Overall, our findings suggest a model in which soluble forms of mutant SOD1 initiate disease with larger aggregates implicated only in rapidly progressing events in the final stages of disease. Within the final stages of disease, abnormalities in the oxidation of a normal intramolecular disulfide bond in mutant SOD1 facilitate the aggregation of mutant protein.


Journal of Biological Chemistry | 2008

A Limited Role for Disulfide Cross-linking in the Aggregation of Mutant SOD1 Linked to Familial Amyotrophic Lateral Sclerosis

Celeste M. Karch; David R. Borchelt

One of the mechanisms by which mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS) is proposed to involve the accumulation of detergent-insoluble, disulfide-cross-linked, mutant protein. Recent studies have implicated cysteine residues at positions 6 and 111 as critical in mediating disulfide cross-linking and promoting aggregation. In the present study, we used a panel of experimental and disease-linked mutations at cysteine residues of SOD1 (positions 6, 57, 111, and 146) in cell culture assays for aggregation to demonstrate that extensive disulfide cross-linking is not required for the formation of mutant SOD1 aggregates. Experimental mutants possessing only a single cysteine residue or lacking cysteine entirely were found to retain high potential to aggregate. Furthermore we demonstrate that aggregate structures in symptomatic SOD1-G93A mice can be dissociated such that they no longer sediment upon ultracentrifugation (i.e. appear soluble) under relatively mild conditions that leave disulfide bonds intact. Similar to other recent work, we found that cysteines 6 and 111, particularly the latter, play interesting roles in modulating the aggregation of human SOD1. However, we did not find that extensive disulfide cross-linking via these residues, or any other cysteine, is critical to aggregate structure. Instead we suggest that these residues participate in other features of the protein that, in some manner, modulate aggregation.


Journal of Biological Chemistry | 2012

Extracellular Tau Levels Are Influenced by Variability in Tau That Is Associated with Tauopathies

Celeste M. Karch; Amanda T. Jeng; Alison Goate

Background: Cerebrospinal fluid Tau levels are altered in tauopathies; however, the mechanism of Tau secretion is poorly understood. Results: Tau isoforms and mutations alter extracellular Tau levels in cultured cells. Conclusion: Tau is actively released, and Tau release is modified by variability in Tau that is associated with tauopathies. Significance: Defining factors that influence Tau release is crucial to understanding Tau metabolism in tauopathies. Tauopathies are a class of neurodegenerative diseases marked by intracellular aggregates of hyperphosphorylated Tau. These diseases may occur by sporadic mechanisms in which genetic variants represent risk factors for disease, as is the case in Alzheimer disease (AD). In AD, cerebrospinal fluid (CSF) levels of soluble Tau/pTau-181 are higher in cases compared with controls. A subset of frontotemporal dementia (FTD) cases occur by a familial mechanism in which MAPT, the gene that encodes Tau, mutations are dominantly inherited. In symptomatic FTD patients expressing a MAPT mutation, CSF Tau levels are slightly elevated but are significantly lower than in AD patients. We sought to model CSF Tau changes by measuring extracellular Tau in cultured cells. Full-length, monomeric extracellular total Tau and pTau-181 were detectable in human neuroblastoma cells expressing endogenous Tau, in human non-neuronal cells overexpressing wild-type Tau, and in mouse cortical neurons. Tau isoforms influence the rate of Tau release, whereby the N terminus (exons 2/3) and microtubule binding repeat length contribute to Tau release from the cell. Compared with cells overexpressing wild-type Tau, cells overexpressing FTD-associated MAPT mutations produce significantly less extracellular total Tau without altering intracellular total Tau levels. This study demonstrates that cells actively release Tau in the absence of disease or toxicity, and Tau release is modified by changes in the Tau protein that are associated with tauopathies.


Experimental Biology and Medicine | 2009

Immature Copper-Zinc Superoxide Dismutase and Familial Amyotrophic Lateral Sclerosis

Sai V. Seetharaman; Mercedes Prudencio; Celeste M. Karch; Stephen P. Holloway; David R. Borchelt; P. John Hart

Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.


PLOS ONE | 2011

Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer's disease.

John Kauwe; Carlos Cruchaga; Celeste M. Karch; Brooke Sadler; Mo Lee; Kevin Mayo; Wayne Latu; Manti Su'a; Anne M. Fagan; David M. Holtzman; John C. Morris; Alzheimer's Disease Neuroimaging Initiative; Alison Goate

Recent genome-wide association studies of Alzheimers disease (AD) have identified variants in BIN1, CLU, CR1 and PICALM that show replicable association with risk for disease. We have thoroughly sampled common variation in these genes, genotyping 355 variants in over 600 individuals for whom measurements of two AD biomarkers, cerebrospinal fluid (CSF) 42 amino acid amyloid beta fragments (Aβ42) and tau phosphorylated at threonine 181 (ptau181), have been obtained. Association analyses were performed to determine whether variants in BIN1, CLU, CR1 or PICALM are associated with changes in the CSF levels of these biomarkers. Despite adequate power to detect effects as small as a 1.05 fold difference, we have failed to detect evidence for association between SNPs in these genes and CSF Aβ42 or ptau181 levels in our sample. Our results suggest that these variants do not affect risk via a mechanism that results in a strong additive effect on CSF levels of Aβ42 or ptau181.

Collaboration


Dive into the Celeste M. Karch's collaboration.

Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Carlos Cruchaga

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Hsu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Luke W. Bonham

University of California

View shared research outputs
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge