Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cengiz Cinnioglu is active.

Publication


Featured researches published by Cengiz Cinnioglu.


American Journal of Human Genetics | 2004

The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time

Peter A. Underhill; Cengiz Cinnioglu; Manfred Kayser; Bharti Morar; Toomas Kivisild; Rosaria Scozzari; Fulvio Cruciani; Giovanni Destro-Bisol; Gabriella Spedini; Geoffrey K. Chambers; Rene J. Herrera; Kiau Kiun Yong; David Gresham; Ivailo Tournev; Marcus W. Feldman; Luba Kalaydjieva

We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9x10-4 per 25 years, with a standard deviation across loci of 5.7x10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria.


Human Genetics | 2004

Excavating Y-chromosome haplotype strata in Anatolia

Cengiz Cinnioglu; Roy King; Toomas Kivisild; Ersi Abaci Kalfoglu; Sevil Atasoy; Gianpiero L. Cavalleri; Anita S. Lillie; Charles C. Roseman; Alice A. Lin; Kristina Prince; Peter J. Oefner; Peidong Shen; Ornella Semino; Luigi Luca Cavalli-Sforza; Peter A. Underhill

Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.


American Journal of Human Genetics | 2003

The Genetic Heritage of the Earliest Settlers Persists Both in Indian Tribal and Caste Populations

Toomas Kivisild; Siiri Rootsi; Mait Metspalu; Sarabjit S. Mastana; Katrin Kaldma; Jüri Parik; Ene Metspalu; M. Adojaan; Helle-Viivi Tolk; V. A. Stepanov; Mukaddes Gölge; E. Usanga; S.S. Papiha; Cengiz Cinnioglu; Roy King; L. L. Cavalli-Sforza; Peter A. Underhill; Richard Villems

Two tribal groups from southern India--the Chenchus and Koyas--were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at Indian-specific branches of haplogroups M and N that cover populations of different social rank from all over the subcontinent. Coalescence times suggest early late Pleistocene settlement of southern Asia and suggest that there has not been total replacement of these settlers by later migrations. H, L, and R2 are the major Indian Y-chromosomal haplogroups that occur both in castes and in tribal populations and are rarely found outside the subcontinent. Haplogroup R1a, previously associated with the putative Indo-Aryan invasion, was found at its highest frequency in Punjab but also at a relatively high frequency (26%) in the Chenchu tribe. This finding, together with the higher R1a-associated short tandem repeat diversity in India and Iran compared with Europe and central Asia, suggests that southern and western Asia might be the source of this haplogroup. Haplotype frequencies of the MX1 locus of chromosome 21 distinguish Koyas and Chenchus, along with Indian caste groups, from European and eastern Asian populations. Taken together, these results show that Indian tribal and caste populations derive largely from the same genetic heritage of Pleistocene southern and western Asians and have received limited gene flow from external regions since the Holocene. The phylogeography of the primal mtDNA and Y-chromosome founders suggests that these southern Asian Pleistocene coastal settlers from Africa would have provided the inocula for the subsequent differentiation of the distinctive eastern and western Eurasian gene pools.


American Journal of Human Genetics | 2004

Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

Siiri Rootsi; Toomas Kivisild; Giorgia Benuzzi; Hela Help; Marina Bermisheva; Ildus Kutuev; Lovorka Barać; Marijana Peričić; Oleg Balanovsky; Andrey Pshenichnov; Daniel Dion; Monica Grobei; Vincenza Battaglia; Alessandro Achilli; Nadia Al-Zahery; Jüri Parik; Roy King; Cengiz Cinnioglu; E. K. Khusnutdinova; Pavao Rudan; Elena Balanovska; Wolfgang Scheffrahn; Maya Simonescu; António Brehm; Rita Gonçalves; Alexandra Rosa; Jean-Paul Moisan; Andre Chaventre; Vladimír Ferák; Sandor Füredi

To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia approximately 9,000 years ago.


American Journal of Human Genetics | 2004

The Levant versus the Horn of Africa: Evidence for Bidirectional Corridors of Human Migrations

J. R. Luis; D. J. Rowold; M. Regueiro; B. Caeiro; Cengiz Cinnioglu; Charles C. Roseman; Peter A. Underhill; L. L. Cavalli-Sforza; Rene J. Herrera

Paleoanthropological evidence indicates that both the Levantine corridor and the Horn of Africa served, repeatedly, as migratory corridors between Africa and Eurasia. We have begun investigating the roles of these passageways in bidirectional migrations of anatomically modern humans, by analyzing 45 informative biallelic markers as well as 10 microsatellite loci on the nonrecombining region of the Y chromosome (NRY) in 121 and 147 extant males from Oman and northern Egypt, respectively. The present study uncovers three important points concerning these demic movements: (1) The E3b1-M78 and E3b3-M123 lineages, as well as the R1*-M173 lineages, mark gene flow between Egypt and the Levant during the Upper Paleolithic and Mesolithic. (2) In contrast, the Horn of Africa appears to be of minor importance in the human migratory movements between Africa and Eurasia represented by these chromosomes, an observation based on the frequency distributions of E3b*-M35 (no known downstream mutations) and M173. (3) The areal diffusion patterns of G-M201, J-12f2, the derivative M173 haplogroups, and M2 suggest more recent genetic associations between the Middle East and Africa, involving the Levantine corridor and/or Arab slave routes. Affinities to African groups were also evaluated by determining the NRY haplogroup composition in 434 samples from seven sub-Saharan African populations. Oman and Egypts NRY frequency distributions appear to be much more similar to those of the Middle East than to any sub-Saharan African population, suggesting a much larger Eurasian genetic component. Finally, the overall phylogeographic profile reveals several clinal patterns and genetic partitions that may indicate source, direction, and relative timing of different waves of dispersals and expansions involving these nine populations.


Nature | 2003

Immunology : hepatitis A virus link to atopic disease

Jennifer J. McIntire; Sarah E. Umetsu; Claudia Macaubas; E. Hoyte; Cengiz Cinnioglu; Luigi Luca Cavalli-Sforza; Gregory S. Barsh; Joachim Hallmayer; Peter A. Underhill; Neil Risch; Gordon J. Freeman; Rosemarie H. DeKruyff; Dale T. Umetsu

Atopic diseases, including asthma, allergic rhinitis and atopic dermatitis, are caused by both environmental and genetic factors. Here we show that infection by hepatitis A virus (HAV) may protect individuals from atopy if they carry a particular variant of the gene that encodes TIM-1 (also known as HAVcr-1) — the cell-surface receptor used by HAV to infect human cells. Exposure to HAV is associated with poor hygiene, large family size and attendance at day-care centres, all factors that are also inversely associated with atopy. Our discovery indicates that interaction between HAV and TIM-1 genotype may contribute to the aetiology of atopic diseases, and provides a mechanism to account for the hygiene hypothesis.


Nature | 2016

Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations

Eunju Kang; Jun Wu; Nuria Marti Gutierrez; Amy Koski; Rebecca Tippner-Hedges; Karen Agaronyan; Aida Platero-Luengo; Paloma Martínez-Redondo; Hong Ma; Yeonmi Lee; Tomonari Hayama; Crystal Van Dyken; Xinjian Wang; Shiyu Luo; Riffat Ahmed; Ying Li; Dongmei Ji; Refik Kayali; Cengiz Cinnioglu; Susan B. Olson; Jeffrey T. Jensen; David Battaglia; David M. Lee; Diana Wu; Taosheng Huang; Don P. Wolf; Dmitry Temiakov; Juan Carlos Izpisua Belmonte; Paula Amato; Shoukhrat Mitalipov

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother–to–child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother’s oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor–to–maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Cell Stem Cell | 2017

Functional Human Oocytes Generated by Transfer of Polar Body Genomes

Hong Ma; Ryan C. O’Neil; Nuria Marti Gutierrez; Manoj Hariharan; Zhuzhu Z. Zhang; Yupeng He; Cengiz Cinnioglu; Refik Kayali; Eunju Kang; Yeonmi Lee; Tomonari Hayama; Amy Koski; Joseph R. Nery; Rosa Castanon; Rebecca Tippner-Hedges; Riffat Ahmed; Crystal Van Dyken; Ying Li; Susan B. Olson; David Battaglia; David M. Lee; Diana H. Wu; Paula Amato; Don P. Wolf; Joseph R. Ecker; Shoukhrat Mitalipov

Oocyte defects lie at the heart of some forms of infertility and could potentially be addressed therapeutically by alternative routes for oocyte formation. Here, we describe the generation of functional human oocytes following nuclear transfer of first polar body (PB1) genomes from metaphase II (MII) oocytes into enucleated donor MII cytoplasm (PBNT). The reconstructed oocytes supported the formation of de novo meiotic spindles and, after fertilization with sperm, meiosis completion and formation of normal diploid zygotes. While PBNT zygotes developed to blastocysts less frequently (42%) than controls (75%), genome-wide genetic, epigenetic, and transcriptional analyses of PBNT and control ESCs indicated comparable numbers of structural variations and markedly similar DNA methylation and transcriptome profiles. We conclude that rescue of PB1 genetic material via introduction into donor cytoplasm may offer a source of oocytes for infertility treatment or mitochondrial replacement therapy for mtDNA disease.


Human Biology | 2013

Genetics and the History of the Samaritans: Y-Chromosomal Microsatellites and Genetic Affinity between Samaritans and Cohanim

Peter J. Oefner; Georg Hölzl; Peidong Shen; Isaac Shpirer; Dov Gefel; Tal Lavi; Eilon Woolf; Cengiz Cinnioglu; Peter A. Underhill; Noah A. Rosenberg; Jochen Hochrein; Julie M. Granka; Marcus W. Feldman

Abstract The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quadrupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722–720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.


Archive | 2004

The eVective mutation rate at Y chromosome short tandem repeats

Pa Underhill; Cengiz Cinnioglu; Manfred Kayser; Bharti Morar; Toomas Kivisild; Rosaria Scozzari; Fulvio Cruciani; Giovanni Destro-Bisol; Gabriella Spedini; Geoffrey K. Chambers; Rene J. Herrera; Kiau Kiun Yong; David Gresham; Ivailo Tournev; Marcus W. Feldman; Luba Kalaydjieva

Collaboration


Dive into the Cengiz Cinnioglu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge