Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad J. Bishop is active.

Publication


Featured researches published by Chad J. Bishop.


Wildlife Monographs | 2009

Effect of Enhanced Nutrition on Mule Deer Population Rate of Change

Chad J. Bishop; Gary C. White; David J. Freddy; Bruce E. Watkins; Thomas R. Stephenson

Abstract Concerns over declining mule deer (Odocoileus hemionus) populations during the 1990s prompted research efforts to identify and understand key limiting factors of deer. Similar to past deer declines, a top priority of state wildlife agencies was to evaluate the relative importance of habitat and predation. We therefore evaluated the effect of enhanced nutrition of deer during winter and spring on fecundity and survival rates using a life table response experiment involving free-ranging mule deer on the Uncompahgre Plateau in southwest Colorado, USA. The treatment represented an instantaneous increase in nutritional carrying capacity of a pinyon (Pinus edulis)−Utah juniper (Juniperus osteosperma) winter range and was intended to simulate optimum habitat quality. Prior studies on the Uncompahgre Plateau indicated predation and disease were the most common proximate causes of deer mortality. By manipulating nutrition and leaving natural predation unaltered, we determined whether habitat quality was ultimately a critical factor limiting the deer population. We measured annual survival and fecundity of adult females and survival of fawns, then estimated population rate of change as a function of enhanced nutrition. Pregnancy and fetal rates of adult females were high and did not vary in response to treatment. Fetal and neonatal survival rates increased in response to treatment, although the treatment effect on neonatal survival was marginal. Overwinter rates of fawn survival increased for treatment deer by 0.16−0.31 depending on year and fawn sex, and none of the 95% confidence intervals associated with the effects overlapped zero. Overwinter rates of fawn survival averaged 0.905 (SE = 0.026) for treatment deer and 0.684 (SE = 0.044) for control deer. Nutritional enhancement increased survival rates of fetuses to the yearling age class by 0.14−0.20 depending on year and fawn sex; 95% confidence intervals slightly overlapped zero. When averaging estimates across sexes and years, treatment caused fetal to yearling survival to increase by 0.177 (SE = 0.082, 95% CI: 0.016−0.337). Annual survival of adult females receiving treatment (Ŝ = 0.879, SE = 0.021) was higher than survival of control adult females (Ŝ = 0.833, SE = 0.025). Our estimate of the population rate of change (λ̂) was 1.165 (SE = 0.036) for treatment deer and 1.033 (SE = 0.038) for control deer. Increased production and survival of young (i.e., fetal, neonatal, and overwinter fawn survival) accounted for 64% of the overall increase in λ̂, whereas adult female survival accounted for 36% of the increase in λ̂. The effect of nutrition treatment on overwinter fawn survival alone accounted for 33% of the overall increase in λ̂. We documented food limitation in the Uncompahgre deer population because survival of fawns and adult females increased considerably in response to enhanced nutrition. We found strong evidence that enhanced nutrition of deer reduced coyote (Canis latrans) and mountain lion (Puma concolor) predation rates of ≥6-month-old fawns and adult females. Our results demonstrate that observed coyote predation, by itself, is not useful for evaluating whether coyotes are negatively impacting a deer population. Our results also indicate that mountain lions may select for deer in poorer condition under some circumstances, suggesting that mountain lion predation may not always be an additive source of mortality. Disease mortality rates of adult females did not decline in response to enhanced nutrition. Winter-range habitat quality was a limiting factor of the Uncompahgre Plateau mule deer population. Therefore, we recommend evaluating habitat treatments for deer that are designed to set-back succession and increase productivity of late-seral pinyon–juniper habitats that presently dominate the winter range.


Journal of Wildlife Management | 2008

Evaluating Dependence Among Mule Deer Siblings in Fetal and Neonatal Survival Analyses

Chad J. Bishop; Gary C. White; Paul M. Lukacs

Abstract The assumption of independent sample units is potentially violated in survival analyses where siblings comprise a high proportion of the sample. Violation of the independence assumption causes sample data to be overdispersed relative to a binomial model, which leads to underestimates of sampling variances. A variance inflation factor, c, is therefore required to obtain appropriate estimates of variances. We evaluated overdispersion in fetal and neonatal mule deer (Odocoileus hemionus) datasets where more than half of the sample units were comprised of siblings. We developed a likelihood function for estimating fetal survival when the fates of some fetuses are unknown, and we used several variations of the binomial model to estimate neonatal survival. We compared theoretical variance estimates obtained from these analyses with empirical variance estimates obtained from data-bootstrap analyses to estimate the overdispersion parameter, c. Our estimates of c for fetal survival ranged from 0.678 to 1.118, which indicate little to no evidence of overdispersion. For neonatal survival, 3 different models indicated that ranged from 1.1 to 1.4 and averaged 1.24–1.26, providing evidence of limited overdispersion (i.e., limited sibling dependence). Our results indicate that fates of sibling mule deer fetuses and neonates may often be independent even though they have the same dam. Predation tends to act independently on sibling neonates because of dam–neonate behavioral adaptations. The effect of maternal characteristics on sibling fate dependence is less straightforward and may vary by circumstance. We recommend that future neonatal survival studies incorporate additional sampling intensity to accommodate modest overdispersion (i.e., = 1.25), which would facilitate a corresponding adjustment in a model selection analysis using quasi-likelihood without a reduction in power. Our computational approach could be used to evaluate sample unit dependence in other studies where fates of individually marked siblings are monitored.


Journal of Applied Ecology | 2013

Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

Jedediah F. Brodie; Heather E. Johnson; Michael S. Mitchell; Peter Zager; Kelly M. Proffitt; Mark Hebblewhite; Matthew J. Kauffman; Bruce K. Johnson; John A. Bissonette; Chad J. Bishop; Justin A. Gude; Jeff Herbert; Kent R. Hersey; Mark A. Hurley; Paul M. Lukacs; Scott McCorquodale; Eliot J. B. McIntire; Josh Nowak; Hall Sawyer; Douglas W. Smith; P. J. White

Summary 1. Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. 2. Proportional hazard analysis revealed that ‘baseline’ (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. 3. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores.


Journal of Wildlife Management | 2005

MULE DEER SURVIVAL AMONG ADJACENT POPULATIONS IN SOUTHWEST IDAHO

Chad J. Bishop; James W. Unsworth; Edward O. Garton

Abstract We investigated survival and cause-specific mortality of mule deer (Odocoileus hemionus) on 3 distinct winter ranges in southwest Idaho from 1992 to 1997 to identify demographic variation and potential limiting factors based on a sample of 447 radiocollared deer. During winters 1995–1996 and 1996–1997, we modeled overwinter fawn mortality based on early winter mass, sex, activity, and habitat use variables. Annual survival rates of adult mule deer varied among the 3 adjacent study areas (χ22 = 10.93, P = 0.004). Overwinter deer survival also varied among study areas (χ22 = 8.00, P = 0.018), and the study area × year, study area × sex, and study area × age interactions were all significant (P ≤ 0.018). Overwinter survival differences among the study areas were not consistent over time or among sexes and ages of deer. Winter malnutrition was the main cause of mortality for both adults and fawns during the severe winter of 1992–1993, when overall survival was low. Excluding harvest, predation was the major proximate cause of deer mortality during 1993–97 when overall survival was higher. The probability of winter fawn mortality increased with lower mass (χ21 = 7.38, P = 0.007), being male (χ21 = 5.61, P = 0.018), smaller group sizes (χ21 = 3.62, P = 0.057), and using steeper slopes (χ21 = 3.05, P = 0.081). Smaller group sizes and use of steep slopes corresponded to conditions where predators were more successful. Our findings suggest that coyote (Canis latrans) predation was largely compensatory whereas mountain lion (Puma concolor) predation was apparently independent of animal condition and dependent more on deer habitat use. Early winter fawn mass was a better predictor of overwinter fawn survival than a suite of winter resource use variables, lending further support for use of fawn mass to predict winters where fawn mortality may be high. No single population in this study could be used to make reliable inferences regarding deer survival in the other populations. Survival rate measurements should be used cautiously to make inferences in populations where survival has not been directly measured.


Journal of Wildlife Management | 2007

Using Vaginal Implant Transmitters to Aid in Capture of Mule Deer Neonates

Chad J. Bishop; David J. Freddy; Gary C. White; Bruce E. Watkins; Thomas R. Stephenson; Lisa L. Wolfe

Abstract Estimating survival of the offspring of marked female ungulates has proven difficult in free-ranging populations yet could improve our understanding of factors that limit populations. We evaluated the feasibility and efficiency of capturing large samples (i.e., >80/yr) of neonate mule deer (Odocoileus hemionus) exclusively from free-ranging, marked adult females using vaginal implant transmitters (VITs, n = 154) and repeated locations of radiocollared females without VITs. We also evaluated the effectiveness of VITs, when used in conjunction with in utero fetal counts, for obtaining direct estimates of fetal survival. During 2003 and 2004, after we placed VIT batteries on a 12-hour duty cycle to lower electronic failure rates, the proportion that shed ≤3 days prepartum or during parturition was 0.623 (SE = 0.0456), and the proportion of VITs shed only during parturition was 0.447 (SE = 0.0468). Our neonate capture success rate was 0.880 (SE = 0.0359) from females with VITs shed ≤3 days prepartum or during parturition and 0.307 (SE = 0.0235) from radiocollared females without VITs or whose implant failed to function properly. Using a combination of techniques, we captured 275 neonates and found 21 stillborns during 2002−2004. We accounted for all fetuses at birth (i.e., live or stillborn) from 78 of the 147 females (0.531, SE = 0.0413) having winter fetal counts, and this rate was heavily dependent on VIT retention success. Deer that shed VITs prepartum were larger than deer that retained VITs to parturition, indicating a need to develop variable-sized VITs that may be fitted individually to deer in the field. We demonstrated that direct estimates of fetal and neonatal survival may be obtained from previously marked female mule deer in free-ranging populations, thus expanding opportunities for conducting field experiments. Survival estimates using VITs lacked bias that is typically associated with other neonate capture techniques. However, current vaginal implant failure rates and overall expense limit broad applicability of the technique.


Journal of Wildlife Diseases | 2010

ESTIMATING CHRONIC WASTING DISEASE EFFECTS ON MULE DEER RECRUITMENT AND POPULATION GROWTH

Jessie Dulberger; N. Thompson Hobbs; Heather M. Swanson; Chad J. Bishop; Michael W. Miller

Chronic wasting disease (CWD), a prion disease of mule deer (Odocoileus hemionus), accelerates mortality and in so doing has the potential to influence population dynamics. Although effects on mule deer survival are clear, how CWD affects recruitment is less certain. We studied how prion infection influenced the number of offspring raised to weaning per adult (≥2 yr old) female mule deer and subsequently the estimated growth rate (λ) of an infected deer herd. Infected and presumably uninfected radio-collared female deer were observed with their fawns in late summer (August–September) during three consecutive years (2006–2008) in the Table Mesa area of Boulder, Colorado, USA. We counted the number of fawns accompanying each female, then used a fully Bayesian model to estimate recruitment by infected and uninfected females and the effect of the disease on λ. On average, infected females weaned 0.95 fawns (95% credible interval=0.56–1.43) whereas uninfected females weaned 1.34 fawns (95% credible interval=1.09–1.61); the probability that uninfected females weaned more fawns than infected females was 0.93). We used estimates of prevalence to weight recruitment and survival parameters in the transition matrix of a three-age, single-sex matrix model and then used the matrix to calculate effects of CWD on λ. When effects of CWD on both survival and recruitment were included, the modeled λ was 0.97 (95% credible interval = 0.82–1.09). Effects of disease on λ were mediated almost entirely by elevated mortality of infected animals. We conclude that although CWD may affect mule deer recruitment, these effects seem to be sufficiently small that they can be omitted in estimating the influences of CWD on population growth rate.


Journal of Wildlife Management | 2011

Effectiveness of a Redesigned Vaginal Implant Transmitter in Mule Deer

Chad J. Bishop; Charles R. Anderson; Daniel P. Walsh; Eric J. Bergman; Peter Kuechle; John Roth

ABSTRACT Our understanding of factors that limit mule deer (Odocoileus hemionus) populations may be improved by evaluating neonatal survival as a function of dam characteristics under free-ranging conditions, which generally requires that both neonates and dams are radiocollared. The most viable technique facilitating capture of neonates from radiocollared adult females is use of vaginal implant transmitters (VITs). To date, VITs have allowed research opportunities that were not previously possible; however, VITs are often expelled from adult females prepartum, which limits their effectiveness. We redesigned an existing VIT manufactured by Advanced Telemetry Systems (ATS; Isanti, MN) by lengthening and widening wings used to retain the VIT in an adult female. Our objective was to increase VIT retention rates and thereby increase the likelihood of locating birth sites and newborn fawns. We placed the newly designed VITs in 59 adult female mule deer and evaluated the probability of retention to parturition and the probability of detecting newborn fawns. We also developed an equation for determining VIT sample size necessary to achieve a specified sample size of neonates. The probability of a VIT being retained until parturition was 0.766 (SE = 0.0605) and the probability of a VIT being retained to within 3 days of parturition was 0.894 (SE = 0.0441). In a similar study using the original VIT wings (Bishop et al. 2007), the probability of a VIT being retained until parturition was 0.447 (SE = 0.0468) and the probability of retention to within 3 days of parturition was 0.623 (SE = 0.0456). Thus, our design modification increased VIT retention to parturition by 0.319 (SE = 0.0765) and VIT retention to within 3 days of parturition by 0.271 (SE = 0.0634). Considering dams that retained VITs to within 3 days of parturition, the probability of detecting at least 1 neonate was 0.952 (SE = 0.0334) and the probability of detecting both fawns from twin litters was 0.588 (SE = 0.0827). We expended approximately 12 person-hours per detected neonate. As a guide for researchers planning future studies, we found that VIT sample size should approximately equal the targeted neonate sample size. Our study expands opportunities for conducting research that links adult female attributes to productivity and offspring survival in mule deer.


Wildlife Society Bulletin | 2005

Effect of limited antlered harvest on mule deer sex and age ratios

Chad J. Bishop; Gary C. White; David J. Freddy; Bruce E. Watkins

Abstract In response to apparent declining mule deer (Odocoileus hemionus) numbers in Colorado during the 1990s, buck harvest limitations were identified as a possible mechanism to increase fawn:doe ratios and hence population productivity. Beginning in 1991, the Colorado Division of Wildlife (CDOW) reduced buck harvest in 4 deer management units to provide quality hunting opportunities. We examined effects of limited harvest on December ratios of bucks:100 does and fawns:100 does using data from limited and unlimited harvest units. Annual buck harvest was reduced by 359 bucks (SE = 133) in limited harvest units as a result of limiting licenses. Fawn:doe ratios declined by 7.51 fawns:100 does (SE = 2.50), total buck:doe ratios increased by 4.52 bucks:100 does (SE = 1.40), and adult buck:doe ratios increased by 3.37 bucks:100 does (SE = 1.04) in response to limited harvest. Based on our analysis, factors other than buck harvest were regulating population productivity, and limiting buck harvest to enhance fawn recruitment is not justified in Colorado. Limited buck harvest should be considered an issue of quality hunting opportunity rather than deer productivity.


Journal of Wildlife Management | 2011

Biological and Socio-Economic Effects of Statewide Limitation of Deer Licenses in Colorado

Eric J. Bergman; Bruce E. Watkins; Chad J. Bishop; Paul M. Lukacs; Mary Lloyd

ABSTRACT We evaluated the biological and socio-economic effects of statewide limitation of mule deer (Odocoileus hemionus) hunting licenses, which began in Colorado in 1999. We implemented a before-after-control-impact (BACI) analysis of annual helicopter sex and age class surveys, collected as part of the Colorado Division of Wildlifes routine monitoring, to assess changes in adult male/adult female ratios and fawn/adult female ratios in response to this change in harvest management. Following statewide limitation and reduction of license sales (1999–2006), we observed increases in adult male/adult female ratios of 7.39 (SE = 2.36) to 15.23 (SE = 1.22) adult males per 100 adult females in moderately limited areas and of 17.55 (SE = 3.27) to 21.86 (SE = 2.31) adult males per 100 adult females in highly limited areas. We simultaneously observed reductions in fawn/adult female ratios in newly limited areas by as much as 6.96 (SE = 2.19) fawns per 100 females, whereas in areas that had previously been limited we observed stabilization of fawn/adult female ratios at levels lower than levels observed under the unlimited harvest management structure. An immediate decline of


Journal of Wildlife Management | 2009

Evaluating Mule Deer Body Condition Using Serum Thyroid Hormone Concentrations

Chad J. Bishop; Bruce E. Watkins; Lisa L. Wolfe; David J. Freddy; Gary C. White

7.86 million in annual revenue stemmed from the change in harvest management, but revenue subsequently rebounded. This study provides preliminary evidence of potential effects that other state and provincial wildlife management agencies may face as they consider shifting mule deer harvest management towards limited license scenarios.

Collaboration


Dive into the Chad J. Bishop's collaboration.

Top Co-Authors

Avatar

Gary C. White

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Unsworth

Idaho Department of Fish and Game

View shared research outputs
Top Co-Authors

Avatar

Paul F. Doherty

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Stephenson

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Bruce K. Johnson

Oregon Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Daniel P. Walsh

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Douglas W. Smith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge