Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas R. Stephenson is active.

Publication


Featured researches published by Thomas R. Stephenson.


Oecologia | 2001

Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring

Stacy G. Jenkins; Steven T. Partridge; Thomas R. Stephenson; Sean D. Farley; Charles T. Robbins

Stable isotope signatures of lactating females and their nursing offspring were measured on 11 species, including herbivores, carnivores, hibernators, and non-hibernators. We hypothesized that: (1) nursing offspring would have stable isotope signatures that were a trophic level higher than their mothers, and (2) this pattern would be species-independent. The plasma of adult females had a δ15N enrichment over their diets of 4.1±0.7‰, but offspring plasma had a mean δ15N enrichment over maternal plasma of 0.9±0.8‰ and no C enrichment (0.0±0.6‰). The trophic level enrichment did not occur between mother and offspring because milk was depleted in both δ15N (1.0±0.5‰) and δ13C (2.1±0.9‰) relative to maternal plasma. Milk to offspring plasma enrichment was relatively small (δ15N enrichment of 1.9±0.7‰ and δ13C enrichment of 1.9±0.8‰) compared to the trophic level enrichment between the adults and their diets. While some species did have significant differences between the isotope signatures of mother and offspring, the differences were not related to whether they were hibernators or non-hibernators, carnivores or herbivores. Investigators wanting to use stable isotopes to quantify weaning or other lactation processes or diets of predators when both adults and nursing offspring are consumed must first establish the parameters that apply to a particular species/environment/diet combination.


Journal of Mammalogy | 2005

PROTEIN CONSERVATION IN FEMALE CARIBOU (RANGIFER TARANDUS): EFFECTS OF DECREASING DIET QUALITY DURING WINTER

Katherine L. Parker; Perry S. Barboza; Thomas R. Stephenson

Abstract Female caribou subsist primarily on lichens and some senescent browse during winter when demands for fetal growth add to costs of thermoregulation and mobility. Lichens, although potentially high in digestible energy, contain less protein than required for maintenance by most north-temperate ungulates. To understand the adaptations of caribou to the nutritional constraints of their primary food resource, we fed captive female caribou a sequence of 3 diets designed to resemble decreasing quality of forages during early, mid-, and late winter, respectively: high energy–high protein (HIGH), medium energy–low protein (MEDIUM), and low energy–low protein (LOW). In vitro digestibility of dry matter declined from 94% (HIGH) in November, to 66% (MEDIUM) in December and January, and to 53% (LOW) from February to April. Dietary protein averaged 19.8% in November and 4.3% from December to April. We used measures of body condition, stable isotopic signatures, and concentrations of nitrogen (N) metabolites to define protein dynamics in the animals. Subcutaneous rump fat declined between October and April from 2.3 cm ± 0.3 SE to <0.5 cm as intake of digestible energy declined from 44.0 ± 2.0 MJ/day to 16.3 ± 3.2 MJ/day. In erythrocytes, increasing enrichment of carbon (13C) throughout winter suggested that caribou reused body lipids, and increases in 15N during January and February indicated that they also recycled amino-N. Urinary N was primarily urea with an isotopic signature that tracked dietary 15N through late winter. Plasma urea-N declined from 44.0 ± 2.6 mg/dl to 8.5 ± 1.2 mg/dl as nitrogen intake declined from 91.5 ± 5.3 g N/day to 14.1 ± 0.9 g N/day. Examination of these data suggests that caribou catabolized dietary C and N in preference to endogenous fat reserves and body protein. Female caribou appear to tolerate low intakes of protein and energy in winter by minimizing net loss of body protein and reapportioning body reserves to support fetal growth.


Wildlife Monographs | 2009

Effect of Enhanced Nutrition on Mule Deer Population Rate of Change

Chad J. Bishop; Gary C. White; David J. Freddy; Bruce E. Watkins; Thomas R. Stephenson

Abstract Concerns over declining mule deer (Odocoileus hemionus) populations during the 1990s prompted research efforts to identify and understand key limiting factors of deer. Similar to past deer declines, a top priority of state wildlife agencies was to evaluate the relative importance of habitat and predation. We therefore evaluated the effect of enhanced nutrition of deer during winter and spring on fecundity and survival rates using a life table response experiment involving free-ranging mule deer on the Uncompahgre Plateau in southwest Colorado, USA. The treatment represented an instantaneous increase in nutritional carrying capacity of a pinyon (Pinus edulis)−Utah juniper (Juniperus osteosperma) winter range and was intended to simulate optimum habitat quality. Prior studies on the Uncompahgre Plateau indicated predation and disease were the most common proximate causes of deer mortality. By manipulating nutrition and leaving natural predation unaltered, we determined whether habitat quality was ultimately a critical factor limiting the deer population. We measured annual survival and fecundity of adult females and survival of fawns, then estimated population rate of change as a function of enhanced nutrition. Pregnancy and fetal rates of adult females were high and did not vary in response to treatment. Fetal and neonatal survival rates increased in response to treatment, although the treatment effect on neonatal survival was marginal. Overwinter rates of fawn survival increased for treatment deer by 0.16−0.31 depending on year and fawn sex, and none of the 95% confidence intervals associated with the effects overlapped zero. Overwinter rates of fawn survival averaged 0.905 (SE = 0.026) for treatment deer and 0.684 (SE = 0.044) for control deer. Nutritional enhancement increased survival rates of fetuses to the yearling age class by 0.14−0.20 depending on year and fawn sex; 95% confidence intervals slightly overlapped zero. When averaging estimates across sexes and years, treatment caused fetal to yearling survival to increase by 0.177 (SE = 0.082, 95% CI: 0.016−0.337). Annual survival of adult females receiving treatment (Ŝ = 0.879, SE = 0.021) was higher than survival of control adult females (Ŝ = 0.833, SE = 0.025). Our estimate of the population rate of change (λ̂) was 1.165 (SE = 0.036) for treatment deer and 1.033 (SE = 0.038) for control deer. Increased production and survival of young (i.e., fetal, neonatal, and overwinter fawn survival) accounted for 64% of the overall increase in λ̂, whereas adult female survival accounted for 36% of the increase in λ̂. The effect of nutrition treatment on overwinter fawn survival alone accounted for 33% of the overall increase in λ̂. We documented food limitation in the Uncompahgre deer population because survival of fawns and adult females increased considerably in response to enhanced nutrition. We found strong evidence that enhanced nutrition of deer reduced coyote (Canis latrans) and mountain lion (Puma concolor) predation rates of ≥6-month-old fawns and adult females. Our results demonstrate that observed coyote predation, by itself, is not useful for evaluating whether coyotes are negatively impacting a deer population. Our results also indicate that mountain lions may select for deer in poorer condition under some circumstances, suggesting that mountain lion predation may not always be an additive source of mortality. Disease mortality rates of adult females did not decline in response to enhanced nutrition. Winter-range habitat quality was a limiting factor of the Uncompahgre Plateau mule deer population. Therefore, we recommend evaluating habitat treatments for deer that are designed to set-back succession and increase productivity of late-seral pinyon–juniper habitats that presently dominate the winter range.


Ecosphere | 2011

Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life‐history characteristics

Kevin L. Monteith; Vernon C. Bleich; Thomas R. Stephenson; Becky M. Pierce; Mary M. Conner; Robert W. Klaver; R. Terry Bowyer

Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants. Plasticity in timing of migration in response to climatic conditions and plant phenology may be an adaptive behavioral strategy, which should reduce the detrimental effects of trophic mismatches between resources and other life-history events of large herbivores. Failure to consider effects of nutrition and other life-history traits may cloud interpretation of phenological patterns of mammals and conceal relationships associated with climate change.


Ecological Applications | 2010

Population-specific vital rate contributions influence management of an endangered ungulate.

Heather E. Johnson; L. Scott Mills; Thomas R. Stephenson; John D. Wehausen

To develop effective management strategies for the recovery of threatened and endangered species, it is critical to identify those vital rates (survival and reproductive parameters) responsible for poor population performance and those whose increase will most efficiently change a populations trajectory. In actual application, however, approaches identifying key vital rates are often limited by inadequate demographic data, by unrealistic assumptions of asymptotic population dynamics, and of equal, infinitesimal changes in mean vital rates. We evaluated the consequences of these limitations in an analysis of vital rates most important in the dynamics of federally endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae). Based on data collected from 1980 to 2007, we estimated vital rates in three isolated populations, accounting for sampling error, variance, and covariance. We used analytical sensitivity analysis, life-stage simulation analysis, and a novel non-asymptotic simulation approach to (1) identify vital rates that should be targeted for subspecies recovery; (2) assess vital rate patterns of endangered bighorn sheep relative to other ungulate populations; (3) evaluate the performance of asymptotic vs. non-asymptotic models for meeting short-term management objectives; and (4) simulate management scenarios for boosting bighorn sheep population growth rates. We found wide spatial and temporal variation in bighorn sheep vital rates, causing rates to vary in their importance to different populations. As a result, Sierra Nevada bighorn sheep exhibited population-specific dynamics that did not follow theoretical expectations or those observed in other ungulates. Our study suggests that vital rate inferences from large, increasing, or healthy populations may not be applicable to those that are small, declining, or endangered. We also found that, while asymptotic approaches were generally applicable to bighorn sheep conservation planning; our non-asymptotic population models yielded unexpected results of importance to managers. Finally, extreme differences in the dynamics of individual bighorn sheep populations imply that effective management strategies for endangered species recovery may often need to be population-specific.


Journal of Wildlife Management | 2010

Revisions of Rump Fat and Body Scoring Indices for Deer, Elk, and Moose

Rachel C. Cook; John G. Cook; Thomas R. Stephenson; Woodrow L. Myers; Scott M. McCorquodale; David J. Vales; Larry L. Irwin; P. Briggs Hall; Rocky D. Spencer; Shannon L. Murphie; Kathryn A. Schoenecker; Patrick J. Miller

Abstract Because they do not require sacrificing animals, body condition scores (BCS), thickness of rump fat (MAXFAT), and other similar predictors of body fat have advanced estimating nutritional condition of ungulates and their use has proliferated in North America in the last decade. However, initial testing of these predictors was too limited to assess their reliability among diverse habitats, ecotypes, subspecies, and populations across the continent. With data collected from mule deer (Odocoileus hemionus), elk (Cervus elaphus), and moose (Alces alces) during initial model development and data collected subsequently from free-ranging mule deer and elk herds across much of the western United States, we evaluated reliability across a broader range of conditions than were initially available. First, to more rigorously test reliability of the MAXFAT index, we evaluated its robustness across the 3 species, using an allometric scaling function to adjust for differences in animal size. We then evaluated MAXFAT, rump body condition score (rBCS), rLIVINDEX (an arithmetic combination of MAXFAT and rBCS), and our new allometrically scaled rump-fat thickness index using data from 815 free-ranging female Roosevelt and Rocky Mountain elk (C. e. roosevelti and C. e. nelsoni) from 19 populations encompassing 4 geographic regions and 250 free-ranging female mule deer from 7 populations and 2 regions. We tested for effects of subspecies, geographic region, and captive versus free-ranging existence. Rump-fat thickness, when scaled allometrically with body mass, was related to ingesta-free body fat over a 38–522-kg range of body mass (r2  =  0.87; P < 0.001), indicating the technique is remarkably robust among at least the 3 cervid species of our analysis. However, we found an underscoring bias with the rBCS for elk that had >12% body fat. This bias translated into a difference between subspecies, because Rocky Mountain elk tended to be fatter than Roosevelt elk in our sample. Effects of observer error with the rBCS also existed for mule deer with moderate to high levels of body fat, and deer body size significantly affected accuracy of the MAXFAT predictor. Our analyses confirm robustness of the rump-fat index for these 3 species but highlight the potential for bias due to differences in body size and to observer error with BCS scoring. We present alternative LIVINDEX equations where potential bias from rBCS and bias due to body size are eliminated or reduced. These modifications improve the accuracy of estimating body fat for projects intended to monitor nutritional status of herds or to evaluate nutritions influence on population demographics.


Journal of Wildlife Management | 2007

Validating Predictive Models of Nutritional Condition for Mule Deer

Rachel C. Cook; Thomas R. Stephenson; Woodrow L. Myers; John G. Cook; Lisa A. Shipley

Abstract We developed new, and validated existing, indices of nutritional condition for live and dead mule deer (Odocoileus hemionus). Live animal indices included a body condition score (BCS), thickness of subcutaneous fat and selected muscles using ultrasonography, and body mass. Dead animal indices included femur, metatarsal, and mandible marrow fat, 3 kidney fat indices, and 2 carcass scoring methods. We used 21 female deer and 4 castrates (1–11 yr old) varying widely in nutritional condition (2–28% ingesta-free body fat). Deer were euthanized and homogenized for chemical analysis of fat, protein, water, and ash content. Estimates of fat and gross energy (GE) were regressed against each condition indicator using regression. Subcutaneous fat thickness, a rump BCS, and rLIVINDEX (an arithmetic combination of subcutaneous fat thickness and the rump BCS) were most related to condition for live animals (r2 ≥ 0.87, P < 0.001) whereas the Kistner score and kidney fat were most related to fat and GE for dead animals (r2 ≥ 0.77, P < 0.001). We also evaluated range of usefulness and sensitivity to small changes in body condition for all models. In general, indices with moderate or highly curvilinear statistical relations to body fat or those based on only one fat depot or a small number of ranking scores will have limitations in their use. Our results identify robust tools for a variety of research and monitoring designs useful for evaluating nutritions effect on mule deer populations.


Journal of Wildlife Management | 1996

Mule Deer Movements in Response to Military Activity in Southeast Colorado

Thomas R. Stephenson; Michael R. Vaughan; David E. Andersen

During January 1986-September 1988 we studied the behavioral responses of 71 radiocollared mule deer (Odocoileus hemionus) to military activity on the Pinon Canyon Maneuver Site in southeastern Colorado. Military training was initiated on the site during August 1985 and recurred about 3 times yearly for periods of one month. During a maneuver, 3/7 of the site was used for training in accordance with a rotational land use schedule. During the nonsummer seasons, female seasonal convex polygon and harmonic mean home ranges were larger in maneuver and previous-maneuver areas than nonmaneuver areas (P < 0.002). During summer, female convex polygon home ranges were larger in maneuver than nonmaneuver areas (P = 0.066). Fawn summer home ranges were larger in maneuver than previous-maneuver areas (P < 0.01). Male home range sizes differed only for 50% harmonic mean transformation annual home ranges (P = 0.056); bucks in maneuver areas had larger home ranges than in nonmaneuver areas. Female deer in maneuver areas exhibited significant home area shifts (P = 0.049) between premaneuver and maneuver periods more frequently (40.0%) than did deer in nonmaneuver (control) areas (12.5%). Mule deer in military training areas may have responded to human harassment, alteration of security cover, or destruction of the forage base. We suggest that deer may respond more intensely to unpredictable than predictable human activity.


Journal of Wildlife Management | 2007

Using Vaginal Implant Transmitters to Aid in Capture of Mule Deer Neonates

Chad J. Bishop; David J. Freddy; Gary C. White; Bruce E. Watkins; Thomas R. Stephenson; Lisa L. Wolfe

Abstract Estimating survival of the offspring of marked female ungulates has proven difficult in free-ranging populations yet could improve our understanding of factors that limit populations. We evaluated the feasibility and efficiency of capturing large samples (i.e., >80/yr) of neonate mule deer (Odocoileus hemionus) exclusively from free-ranging, marked adult females using vaginal implant transmitters (VITs, n = 154) and repeated locations of radiocollared females without VITs. We also evaluated the effectiveness of VITs, when used in conjunction with in utero fetal counts, for obtaining direct estimates of fetal survival. During 2003 and 2004, after we placed VIT batteries on a 12-hour duty cycle to lower electronic failure rates, the proportion that shed ≤3 days prepartum or during parturition was 0.623 (SE = 0.0456), and the proportion of VITs shed only during parturition was 0.447 (SE = 0.0468). Our neonate capture success rate was 0.880 (SE = 0.0359) from females with VITs shed ≤3 days prepartum or during parturition and 0.307 (SE = 0.0235) from radiocollared females without VITs or whose implant failed to function properly. Using a combination of techniques, we captured 275 neonates and found 21 stillborns during 2002−2004. We accounted for all fetuses at birth (i.e., live or stillborn) from 78 of the 147 females (0.531, SE = 0.0413) having winter fetal counts, and this rate was heavily dependent on VIT retention success. Deer that shed VITs prepartum were larger than deer that retained VITs to parturition, indicating a need to develop variable-sized VITs that may be fitted individually to deer in the field. We demonstrated that direct estimates of fetal and neonatal survival may be obtained from previously marked female mule deer in free-ranging populations, thus expanding opportunities for conducting field experiments. Survival estimates using VITs lacked bias that is typically associated with other neonate capture techniques. However, current vaginal implant failure rates and overall expense limit broad applicability of the technique.


Conservation Biology | 2011

Translating Effects of Inbreeding Depression on Component Vital Rates to Overall Population Growth in Endangered Bighorn Sheep

Heather E. Johnson; L. Scott Mills; John D. Wehausen; Thomas R. Stephenson; Gordon Luikart

Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations.

Collaboration


Dive into the Thomas R. Stephenson's collaboration.

Top Co-Authors

Avatar

Vernon C. Bleich

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Becky M. Pierce

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. German

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kris J. Hundertmark

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge