Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chae-Seon Hong is active.

Publication


Featured researches published by Chae-Seon Hong.


Radiation oncology journal | 2015

The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center

Kwangzoo Chung; Youngyih Han; Jinsung Kim; Sung Hwan Ahn; Sang Gyu Ju; Sang Hoon Jung; Yoonsun Chung; Sungkoo Cho; Kwanghyun Jo; Eun Hyuk Shin; Chae-Seon Hong; Jung Suk Shin; Seyjoon Park; Dae-Hyun Kim; Hye Young Kim; Boram Lee; Gantaro Shibagaki; Hideki Nonaka; Kenzo Sasai; Yukio Koyabu; Changhoon Choi; Seung Jae Huh; Yong Chan Ahn; Hong Ryull Pyo; Do Hoon Lim; Hee Chul Park; Won Soon Park; Dong Ryul Oh; Jae Myung Noh; Jeong Il Yu

Purpose The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. Materials and Methods The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. Results The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. Conclusion The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.


Medical Physics | 2014

Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer.

Chae-Seon Hong; Sang Gyu Ju; Min-Kyu Kim; Jung-in Kim; Jin Man Kim; Tae-Suk Suh; Youngyih Han; Yong Chan Ahn; Doo Ho Choi; Heerim Nam; Hee Chul Park

PURPOSE The authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancers. METHODS The authors employed two types of mock phantoms: large-sized head and neck (LH&N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S&S_IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH&N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S&S_IMRT. For VMAT, single arc (VMAT1) and double arc (VMAT2) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan. RESULTS 2.5-mm MLC showed better dosimetric characteristics in S&S_IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH&N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH&N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH&N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was greater than 95% according to the 3%/3 mm criteria. There were no significant differences in dosimetric error between the 2.5- and 5-mm MLCs. CONCLUSIONS As compared with MLC of 5-mm leaf widths, MLC with finer leaf width (2.5-mm) can provide better dosimetric outcomes in IMRT for C-shape. However, the MLC leaf width may only have minor effects on dosimetric characteristics in IMRT for LH&N. The results of the present study will serve as a useful assessment standard when assigning or introducing equipment for the treatment of H&N cancers.


Journal of Radiation Research | 2013

Different effects of bladder distention on point A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer

Sang Gyu Ju; Seung Jae Huh; Jung Suk Shin; Won Soon Park; Heerim Nam; Sunhyun Bae; Dong Gyun Oh; Chae-Seon Hong; Jin Sung Kim; Youngyih Han; Doo Ho Choi

This study sought to evaluate the differential effects of bladder distention on point A-based (AICBT) and three-dimensional conformal intracavitary brachytherapy (3D-ICBT) planning for cervical cancer. Two sets of CT scans were obtained for ten patients to evaluate the effect of bladder distention. After the first CT scan, with an empty bladder, a second set of CT scans was obtained with the bladder filled. The clinical target volume (CTV), bladder, rectum, and small bowel were delineated on each image set. The AICBT and 3D-ICBT plans were generated, and we compared the different planning techniques with respect to the dose characteristics of CTV and organs at risk. As a result of bladder distention, the mean dose (D50) was decreased significantly and geometrical variations were observed in the bladder and small bowel, with acceptable minor changes in the CTV and rectum. The average D2 cm3and D1 cm3showed a significant change in the bladder and small bowel with AICBT; however, no change was detected with the 3D-ICBT planning. No significant dose change in the CTV or rectum was observed with either the AICBT or the 3D-ICBT plan. The effect of bladder distention on dosimetrical change in 3D-ICBT planning appears to be minimal, in comparison with AICBT planning.


Medical Physics | 2012

Development of a video‐guided real‐time patient motion monitoring system

Sang Gyu Ju; Woong Huh; Chae-Seon Hong; Jin Sung Kim; Jung Suk Shin; Eunhyuk Shin; Youngyih Han; Yong Chan Ahn; Hee Chul Park; Doo Ho Choi

PURPOSE The authors developed a video image-guided real-time patient motion monitoring (VGRPM) system using PC-cams, and its clinical utility was evaluated using a motion phantom. METHODS The VGRPM system has three components: (1) an image acquisition device consisting of two PC-cams, (2) a main control computer with a radiation signal controller and warning system, and (3) patient motion analysis software developed in-house. The intelligent patient motion monitoring system was designed for synchronization with a beam on/off trigger signal in order to limit operation to during treatment time only and to enable system automation. During each treatment session, an initial image of the patient is acquired as soon as radiation starts and is compared with subsequent live images, which can be acquired at up to 30 fps by the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ(movement)) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.3, 0.5, and 1.0 cm for 1 and 2 s, respectively, was used to evaluate the system performance. The authors measured optimal δ(movement) for clinical use, the minimum distance that can be detected with this system, and the response time of the whole system using a video analysis technique. The stability of the system in a linear accelerator unit was evaluated for a period of 6 months. RESULTS As a result of the moving phantom test, the δ(movement) for detection of all simulated phantom motion except the 0.1 cm movement was determined to be 0.2% of total number of pixels in the initial image. The system can detect phantom motion as small as 0.2 cm. The measured response time from the detection of phantom movement to generation of the warning signal was 0.1 s. No significant functional disorder of the system was observed during the testing period. CONCLUSIONS The VGRPM system has a convenient design, which synchronizes initiation of the analysis with a beam on/off signal from the treatment machine and may contribute to a reduction in treatment error due to patient motion and increase the accuracy of treatment dose delivery.


Medical Physics | 2015

Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators

Min-Kyu Kim; Sang Gyu Ju; Kwangzoo Chung; Chae-Seon Hong; Jungkuk Kim; Jinsung Kim; Sung Hwan Ahn; Sang Hoon Jung; Youngyih Han; Yoonsun Chung; Sungkoo Cho; Dongho Shin; Doo Ho Choi

PURPOSE A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. METHODS The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. RESULTS The AutoRCQA system accurately detected all fake objects in accordance with the given criteria. The median systematic offset of the seven CMM-RCs was 0.08 mm (interquartile range: -0.25 to 0.37 mm) and -0.08 mm (-0.58 to 0.01 mm) in the X- and Y-directions, respectively, while the median distance difference was 0.37 mm (0.23-0.94 mm). The median thickness difference of the TPS-manual measurement at points 1, 2, and 3 was -0.4 mm (-0.4 to -0.2 mm), -0.2 mm (-0.3 to 0.0 mm), and -0.3 mm (-0.6 to -0.1 mm), respectively, while the median difference of 3DMS was 0.0 mm (-0.1 to 0.2 mm), 0.0 mm (-0.1 to 0.3 mm), and 0.1 mm (-0.1 to 0.2 mm), respectively. Thus, 3DMS showed slightly better values compared to the manual measurements for points 1 and 3 in statistical analysis (p < 0.05). The average pass rate of the seven CMM-RCs was 97.97% ± 1.68% for 1-mm CA conditions, increasing to 99.98% ± 0.03% and 100% ± 0.00% for 2- and 3-mm CA conditions, respectively. The average net analysis time was 18.01 ± 1.65 min. CONCLUSIONS The authors have developed an automated 3DS-based proton RC QA system and verified its performance. The AutoRCQA system may improve the accuracy and efficiency of QA for RCs.


Cancer Research and Treatment | 2015

Effect of Radiation Therapy Techniques on Outcome in N3-positive IIIB Non-small Cell Lung Cancer Treated with Concurrent Chemoradiotherapy

Jae Myoung Noh; Jin Man Kim; Yong Chan Ahn; Hongryull Pyo; BoKyong Kim; Dongryul Oh; Sang Gyu Ju; Jin Sung Kim; Jung Suk Shin; Chae-Seon Hong; Hyojung Park; Eonju Lee

Purpose This study was conducted to evaluate clinical outcomes following definitive concurrent chemoradiotherapy (CCRT) for patients with N3-positive stage IIIB (N3-IIIB) non-small cell lung cancer (NSCLC), with a focus on radiation therapy (RT) techniques. Materials and Methods From May 2010 to November 2012, 77 patients with N3-IIIB NSCLC received definitive CCRT (median, 66 Gy). RT techniques were selected individually based on estimated lung toxicity, with 3-dimensional conformal RT (3D-CRT) and intensity-modulated RT (IMRT) delivered to 48 (62.3%) and 29 (37.7%) patients, respectively. Weekly docetaxel/paclitaxel plus cisplatin (67, 87.0%) was the most common concurrent chemotherapy regimen. Results The median age and clinical target volume (CTV) were 60 years and 288.0 cm3, respectively. Patients receiving IMRT had greater disease extent in terms of supraclavicular lymph node (SCN) involvement and CTV ≥ 300 cm3. The median follow-up time was 21.7 months. Fortyfive patients (58.4%) experienced disease progression, most frequently distant metastasis (39, 50.6%). In-field locoregional control, progression-free survival (PFS), and overall survival (OS) rates at 2 years were 87.9%, 38.7%, and 75.2%, respectively. Although locoregional control was similar between RT techniques, patients receiving IMRT had worse PFS and OS, and SCN metastases from the lower lobe primary tumor and CTV ≥ 300 cm3were associated with worse OS. The incidence and severity of toxicities did not differ significantly between RT techniques. Conclusion IMRT could lead to similar locoregional control and toxicity, while encompassing a greater disease extent than 3D-CRT. The decision to apply IMRT should be made carefully after considering oncologic outcomes associated with greater disease extent and cost.


Scientific Reports | 2017

Development of patient-specific phantoms for verification of stereotactic body radiation therapy planning in patients with metallic screw fixation

Dongryul Oh; Chae-Seon Hong; Sang Gyu Ju; Minkyu Kim; Bum Yong Koo; SungBack Choi; Hee Chul Park; Doo Ho Choi; Hongryull Pyo

A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.


Cancer Research and Treatment | 2015

Carotid-Sparing TomoHelical 3-Dimensional Conformal Radiotherapy for Early Glottic Cancer

Chae-Seon Hong; Dongryul Oh; Sang Gyu Ju; Yong Chan Ahn; Jae Myoung Noh; Kwangzoo Chung; Jin Sung Kim; Tae-Suk Suh

Purpose The purpose of this study was to investigate the dosimetric benefits and treatment efficiency of carotid-sparing TomoHelical 3-dimensional conformal radiotherapy (TH-3DCRT) for early glottic cancer. Materials and Methods Ten early-stage (T1N0M0) glottic squamous cell carcinoma patients were simulated, based on computed tomography scans. Two-field 3DCRT (2F-3DCRT), 3-field intensity-modulated radiation therapy (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated with a 67.5-Gy total prescription dose to the planning target volume (PTV) for each patient. In order to evaluate the plan quality, dosimetric characteristics were compared in terms of conformity index (CI) and homogeneity index (HI) for PTV, dose to the carotid arteries, and maximum dose to the spinal cord. Treatment planning and delivery times were compared to evaluate treatment efficiency. Results The median CI was substantially better for the 3F-IMRT (0.65), TH-IMRT (0.64), and TH-3DCRT (0.63) plans, compared to the 2F-3DCRT plan (0.32). PTV HI was slightly better for TH-3DCRT and TH-IMRT (1.05) compared to 2F-3DCRT (1.06) and 3F-IMRT (1.09). TH-3DCRT, 3F-IMRT, and TH-IMRT showed an excellent carotid sparing capability compared to 2F-3DCRT (p < 0.05). For all plans, the maximum dose to the spinal cord was < 45 Gy. The median treatment planning times for 2F-3DCRT (5.85 minutes) and TH-3DCRT (7.10 minutes) were much lower than those for 3F-IMRT (45.48 minutes) and TH-IMRT (35.30 minutes). The delivery times for 2F-3DCRT (2.06 minutes) and 3F-IMRT (2.48 minutes) were slightly lower than those for TH-IMRT (2.90 minutes) and TH-3DCRT (2.86 minutes). Conclusion TH-3DCRT showed excellent carotid-sparing capability, while offering high efficiency and maintaining good PTV coverage.


Cancer Research and Treatment | 2015

Carotid-Sparing TomoHelical 3D-Conformal Radiotherapy for Early Glottic Cancer

Chae-Seon Hong; Dongryul Oh; Sang Gyu Ju; Yong Chan Ahn; Jae Myoung Noh; Kwangzoo Chung; Jin Sung Kim; Tae-Suk Suh

Purpose The purpose of this study was to investigate the dosimetric benefits and treatment efficiency of carotid-sparing TomoHelical 3-dimensional conformal radiotherapy (TH-3DCRT) for early glottic cancer. Materials and Methods Ten early-stage (T1N0M0) glottic squamous cell carcinoma patients were simulated, based on computed tomography scans. Two-field 3DCRT (2F-3DCRT), 3-field intensity-modulated radiation therapy (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated with a 67.5-Gy total prescription dose to the planning target volume (PTV) for each patient. In order to evaluate the plan quality, dosimetric characteristics were compared in terms of conformity index (CI) and homogeneity index (HI) for PTV, dose to the carotid arteries, and maximum dose to the spinal cord. Treatment planning and delivery times were compared to evaluate treatment efficiency. Results The median CI was substantially better for the 3F-IMRT (0.65), TH-IMRT (0.64), and TH-3DCRT (0.63) plans, compared to the 2F-3DCRT plan (0.32). PTV HI was slightly better for TH-3DCRT and TH-IMRT (1.05) compared to 2F-3DCRT (1.06) and 3F-IMRT (1.09). TH-3DCRT, 3F-IMRT, and TH-IMRT showed an excellent carotid sparing capability compared to 2F-3DCRT (p < 0.05). For all plans, the maximum dose to the spinal cord was < 45 Gy. The median treatment planning times for 2F-3DCRT (5.85 minutes) and TH-3DCRT (7.10 minutes) were much lower than those for 3F-IMRT (45.48 minutes) and TH-IMRT (35.30 minutes). The delivery times for 2F-3DCRT (2.06 minutes) and 3F-IMRT (2.48 minutes) were slightly lower than those for TH-IMRT (2.90 minutes) and TH-3DCRT (2.86 minutes). Conclusion TH-3DCRT showed excellent carotid-sparing capability, while offering high efficiency and maintaining good PTV coverage.


Medical Physics | 2012

SU‐E‐J‐172: Development of a Video Guided Real‐Time Patient Motion Monitoring System for Helical Tomotherpay

S Ju; Chae-Seon Hong; D. Yim; Min Kyu Kim; J. Kim; Youngyih Han; Jung Suk Shin; Eunhyuk Shin; Sung Hwan Ahn; Duck Hwan Choi

PURPOSE We developed a video image-guided real-time patient motion monitoring system for helical Tomotherapy (VGRPM-Tomo), and its clinical utility was evaluated using a motion phantom. METHODS The VGRPM-Tomo consisted of three components: an image acquisition device consisting of two PC-cams, a main control computer with a radiation signal controller and warning system, and patient motion analysis software, which was developed in house. The system was designed for synchronization with a beam on/off trigger signal to limit operation during treatment time only and to enable system automation. In order to detect the patient motion while the couch is moving into the gantry, a reference image, which continuously updated its background by exponential weighting filter (EWF), is compared with subsequent live images using the real-time frame difference-based analysis software. When the error range exceeds the set criteria (δ_movement) due to patient movement, a warning message is generated in the form of light and sound. The described procedure repeats automatically for each patient. A motion phantom, which operates by moving a distance of 0.1, 0.2, 0.5, and 1.0 cm for 1 and 2 sec, respectively, was used to evaluate the system performance at maximum couch speed (0.196 cm/sec) in a Helical Tomotherapy (HD, Hi-art, Tomotherapy, USA). We measured the optimal EWF factor (a) and δ_movement, which is the minimum distance that can be detected with this system, and the response time of the whole system. RESULTS The optimal a for clinical use ranged from 0.85 to 0.9. The system was able to detect phantom motion as small as 0.2 cm with tight δ_movement, 0.1% total number of pixels in the reference image. The measured response time of the whole system was 0.1 sec. CONCLUSIONS The VGRPM-tomo can contribute to reduction of treatment error caused by the motion of patients and increase the accuracy of treatment dose delivery in HD. This work was supported by the Technology Innovation Program, 10040362, Development of an integrated management solution for radiation therapy funded by the Ministry of Knowledge Economy (MKE, Korea). This idea is protected by a Korean patent (patent no. 10-1007367).

Collaboration


Dive into the Chae-Seon Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Gyu Ju

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Ju

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doo Ho Choi

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge