Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chan Yeong Kim is active.

Publication


Featured researches published by Chan Yeong Kim.


Scientific Reports | 2015

TRRUST: A reference database of human transcriptional regulatory interactions

Heonjong Han; Hongseok Shim; Donghyun Shin; Jung Eun Shim; Yunhee Ko; Junha Shin; Hanhae Kim; Ara Cho; Eiru Kim; Tak Lee; Hyojin Kim; Kyung Soo Kim; Sunmo Yang; Dasom Bae; Ayoung Yun; Sunphil Kim; Chan Yeong Kim; Hyeon Jin Cho; Byunghee Kang; Susie Shin; Insuk Lee

The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge in human genetics. Numerous computational methods have been developed to infer regulatory interactions between human transcriptional factors (TFs) and target genes from high-throughput data, and their performance evaluation requires gold-standard interactions. Here we present a database of literature-curated human TF-target interactions, TRRUST (transcriptional regulatory relationships unravelled by sentence-based text-mining, http://www.grnpedia.org/trrust), which currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the largest publicly available database of literature-curated human TF-target interactions to date. TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the computational reconstruction of human TRNs.


Nucleic Acids Research | 2018

TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions

Heonjong Han; Jae Won Cho; Sangyoung Lee; Ayoung Yun; Hyojin Kim; Dasom Bae; Sunmo Yang; Chan Yeong Kim; Muyoung Lee; Eunbeen Kim; Sungho Lee; Byunghee Kang; Dabin Jeong; Yaeji Kim; Hyeon Nae Jeon; Haein Jung; Sunhwee Nam; Michael Chung; Jong Hoon Kim; Insuk Lee

Abstract Transcription factors (TFs) are major trans-acting factors in transcriptional regulation. Therefore, elucidating TF–target interactions is a key step toward understanding the regulatory circuitry underlying complex traits such as human diseases. We previously published a reference TF–target interaction database for humans—TRRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining)—which was constructed using sentence-based text mining, followed by manual curation. Here, we present TRRUST v2 (www.grnpedia.org/trrust) with a significant improvement from the previous version, including a significantly increased size of the database consisting of 8444 regulatory interactions for 800 TFs in humans. More importantly, TRRUST v2 also contains a database for TF–target interactions in mice, including 6552 TF–target interactions for 828 mouse TFs. TRRUST v2 is also substantially more comprehensive and less biased than other TF–target interaction databases. We also improved the web interface, which now enables prioritization of key TFs for a physiological condition depicted by a set of user-input transcriptional responsive genes. With the significant expansion in the database size and inclusion of the new web tool for TF prioritization, we believe that TRRUST v2 will be a versatile database for the study of the transcriptional regulation involved in human diseases.


Nucleic Acids Research | 2017

GWAB: A web server for the network-based boosting of human genome-wide association data

Jung Eun Shim; Changbae Bang; Sunmo Yang; Tak Lee; Sohyun Hwang; Chan Yeong Kim; U. Martin Singh-Blom; Edward M. Marcotte; Insuk Lee

Abstract During the last decade, genome-wide association studies (GWAS) have represented a major approach to dissect complex human genetic diseases. Due in part to limited statistical power, most studies identify only small numbers of candidate genes that pass the conventional significance thresholds (e.g. P ≤ 5 × 10−8). This limitation can be partly overcome by increasing the sample size, but this comes at a higher cost. Alternatively, weak association signals can be boosted by incorporating independent data. Previously, we demonstrated the feasibility of boosting GWAS disease associations using gene networks. Here, we present a web server, GWAB (www.inetbio.org/gwab), for the network-based boosting of human GWAS data. Using GWAS summary statistics (P-values) for SNPs along with reference genes for a disease of interest, GWAB reprioritizes candidate disease genes by integrating the GWAS and network data. We found that GWAB could more effectively retrieve disease-associated reference genes than GWAS could alone. As an example, we describe GWAB-boosted candidate genes for coronary artery disease and supporting data in the literature. These results highlight the inherent value in sub-threshold GWAS associations, which are often not publicly released. GWAB offers a feasible general approach to boost such associations for human disease genetics.


Scientific Reports | 2016

Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

Sohyun Hwang; Chan Yeong Kim; Sun-Gou Ji; Junhyeok Go; Hanhae Kim; Sunmo Yang; Hye Jin Kim; Ara Cho; Sang Sun Yoon; Insuk Lee

Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.


Nature Communications | 2016

A single gene of a commensal microbe affects host susceptibility to enteric infection

Mi Young Yoon; Kyung Bae Min; Kang Mu Lee; Yujin Yoon; Yaeseul Kim; Young Taek Oh; Keehoon Lee; Jongsik Chun; Byung Yong Kim; Seok Hwan Yoon; Insuk Lee; Chan Yeong Kim; Sang Sun Yoon

Indigenous microbes inside the host intestine maintain a complex self-regulating community. The mechanisms by which gut microbes interact with intestinal pathogens remain largely unknown. Here we identify a commensal Escherichia coli strain whose expansion predisposes mice to infection by Vibrio cholerae, a human pathogen. We refer to this strain as ‘atypical’ E. coli (atEc) because of its inability to ferment lactose. The atEc strain is resistant to reactive oxygen species (ROS) and proliferates extensively in antibiotic-treated adult mice. V. cholerae infection is more severe in neonatal mice transplanted with atEc compared with those transplanted with a typical E. coli strain. Intestinal ROS levels are decreased in atEc-transplanted mice, favouring proliferation of ROS-sensitive V. cholerae. An atEc mutant defective in ROS degradation fails to facilitate V. cholerae infection when transplanted, suggesting that host infection susceptibility can be regulated by a single gene product of one particular commensal species.


Nucleic Acids Research | 2015

FlyNet: a versatile network prioritization server for the Drosophila community

Junha Shin; Sunmo Yang; Eiru Kim; Chan Yeong Kim; Hongseok Shim; Ara Cho; Hyojin Kim; Sohyun Hwang; Jung Eun Shim; Insuk Lee

Drosophila melanogaster (fruit fly) has been a popular model organism in animal genetics due to the high accessibility of reverse-genetics tools. In addition, the close relationship between the Drosophila and human genomes rationalizes the use of Drosophila as an invertebrate model for human neurobiology and disease research. A platform technology for predicting candidate genes or functions would further enhance the usefulness of this long-established model organism for gene-to-phenotype mapping. Recently, the power of network prioritization for gene-to-phenotype mapping has been demonstrated in many organisms. Here we present a network prioritization server dedicated to Drosophila that covers ∼95% of the coding genome. This server, dubbed FlyNet, has several distinctive features, including (i) prioritization for both genes and functions; (ii) two complementary network algorithms: direct neighborhood and network diffusion; (iii) spatiotemporal-specific networks as an additional prioritization strategy for traits associated with a specific developmental stage or tissue and (iv) prioritization for human disease genes. FlyNet is expected to serve as a versatile hypothesis-generation platform for genes and functions in the study of basic animal genetics, developmental biology and human disease. FlyNet is available for free at http://www.inetbio.org/flynet.


Nucleic Acids Research | 2016

Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource

Hongseok Shim; Ji Hyun Kim; Chan Yeong Kim; Sohyun Hwang; Hyojin Kim; Sunmo Yang; Ji Eun Lee; Insuk Lee

Whole exome sequencing (WES) accelerates disease gene discovery using rare genetic variants, but further statistical and functional evidence is required to avoid false-discovery. To complement variant-driven disease gene discovery, here we present function-driven disease gene discovery in zebrafish (Danio rerio), a promising human disease model owing to its high anatomical and genomic similarity to humans. To facilitate zebrafish-based function-driven disease gene discovery, we developed a genome-scale co-functional network of zebrafish genes, DanioNet (www.inetbio.org/danionet), which was constructed by Bayesian integration of genomics big data. Rigorous statistical assessment confirmed the high prediction capacity of DanioNet for a wide variety of human diseases. To demonstrate the feasibility of the function-driven disease gene discovery using DanioNet, we predicted genes for ciliopathies and performed experimental validation for eight candidate genes. We also validated the existence of heterozygous rare variants in the candidate genes of individuals with ciliopathies yet not in controls derived from the UK10K consortium, suggesting that these variants are potentially involved in enhancing the risk of ciliopathies. These results showed that an integrated genomics big data for a model animal of diseases can expand our opportunity for harnessing WES data in disease gene discovery.


Nucleic Acids Research | 2017

COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)

Sunmo Yang; Chan Yeong Kim; Sohyun Hwang; Eiru Kim; Hyojin Kim; Hongseok Shim; Insuk Lee

The use of high-throughput array and sequencing technologies has produced unprecedented amounts of gene expression data in central public depositories, including the Gene Expression Omnibus (GEO). The immense amount of expression data in GEO provides both vast research opportunities and data analysis challenges. Co-expression analysis of high-dimensional expression data has proven effective for the study of gene functions, and several co-expression databases have been developed. Here, we present a new co-expression database, COEXPEDIA (www.coexpedia.org), which is distinctive from other co-expression databases in three aspects: (i) it contains only co-functional co-expressions that passed a rigorous statistical assessment for functional association, (ii) the co-expressions were inferred from individual studies, each of which was designed to investigate gene functions with respect to a particular biomedical context such as a disease and (iii) the co-expressions are associated with medical subject headings (MeSH) that provide biomedical information for anatomical, disease, and chemical relevance. COEXPEDIA currently contains approximately eight million co-expressions inferred from 384 and 248 GEO series for humans and mice, respectively. We describe how these MeSH-associated co-expressions enable the identification of diseases and drugs previously unknown to be related to a gene or a gene group of interest.


Molecular Plant | 2017

WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum

Tak Lee; Sohyun Hwang; Chan Yeong Kim; Hongseok Shim; Hyojin Kim; Pamela C. Ronald; Edward M. Marcotte; Insuk Lee

Gene networks provide a system-level overview of genetic organizations and enable the dissection of functional modules underlying complex traits. Integration of diverse genomics data based on the Bayesian statistics framework has been successfully applied to the construction of genome-scale functional networks for major crop species such as rice (Lee et al., 2011), soybean (Kim et al., 2017), and tomato (Kim et al., 2016), and their predictive power for gene-to-trait associations has been demonstrated. However, such a predictive gene network is not yet available for bread wheat, Triticum aestivum, an important staple food crop accounting for approximately 20% of the world’s daily food consumption. Bread wheat also serves as a model for studying polyploidy in plants. Some of the reasons that functional genomics studies on bread wheat have lagged behind those on other crops include the large genome of bread wheat ( 17 Gb) and its polyploidy nature, which complicates genetic analysis. However, recent advances in wheat research have considerably improved genome assembly and gene models (International Wheat Genome Sequencing Consortium, 2014). Furthermore, the discovery and application of genome editing (Upadhyay et al., 2013) and TILLING technologies (Uauy et al., 2009) have enabled targeted mutagenesis in wheat protoplasts and whole plants, setting the stage for the application of reverse genetics approaches for functional characterization of wheat genes.


Animal Cells and Systems | 2017

Functional gene networks based on the gene neighborhood in metagenomes

Chan Yeong Kim; Insuk Lee

ABSTRACT The gene neighborhood in prokaryotic genomes has been effectively utilized in inferring co-functional networks in various organisms. Previously, such genomic context information has been sought among completely assembled prokaryotic genomes. Here, we present a method to infer functional gene networks according to the gene neighborhood in metagenome contigs, which are incompletely assembled genomic fragments. Given that the amount of metagenome sequence data has now surpassed that of completely assembled prokaryotic genomes in the public domain, we expect benefits of inferring networks by the metagenome-based gene neighborhood. We generated co-functional networks for diverse taxonomical species using metagenomics contigs derived from the human microbiome and the ocean microbiome. We found that the networks based on the metagenome gene neighborhood outperformed those based on 1748 completely assembled prokaryotic genomes. We also demonstrated that the metagenome-based gene neighborhood could predict genes related to virulence-associated phenotypes in a bacterial pathogen, indicating that metagenome-based functional links could be sufficiently predictive for some phenotypes of medical importance. Owing to the exponential growth of metagenome sequence data in public repositories, metagenome-based inference of co-functional networks will facilitate understanding of gene functions and pathways in diverse species.

Collaboration


Dive into the Chan Yeong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge