Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eiru Kim is active.

Publication


Featured researches published by Eiru Kim.


Scientific Reports | 2016

Systematic comparison of variant calling pipelines using gold standard personal exome variants

Sohyun Hwang; Eiru Kim; Insuk Lee; Edward M. Marcotte

The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes.


Scientific Reports | 2015

TRRUST: A reference database of human transcriptional regulatory interactions

Heonjong Han; Hongseok Shim; Donghyun Shin; Jung Eun Shim; Yunhee Ko; Junha Shin; Hanhae Kim; Ara Cho; Eiru Kim; Tak Lee; Hyojin Kim; Kyung Soo Kim; Sunmo Yang; Dasom Bae; Ayoung Yun; Sunphil Kim; Chan Yeong Kim; Hyeon Jin Cho; Byunghee Kang; Susie Shin; Insuk Lee

The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge in human genetics. Numerous computational methods have been developed to infer regulatory interactions between human transcriptional factors (TFs) and target genes from high-throughput data, and their performance evaluation requires gold-standard interactions. Here we present a database of literature-curated human TF-target interactions, TRRUST (transcriptional regulatory relationships unravelled by sentence-based text-mining, http://www.grnpedia.org/trrust), which currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the largest publicly available database of literature-curated human TF-target interactions to date. TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the computational reconstruction of human TRNs.


Nucleic Acids Research | 2015

AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species

Tak Lee; Sunmo Yang; Eiru Kim; Younhee Ko; Sohyun Hwang; Junha Shin; Jung Eun Shim; Hongseok Shim; Hyojin Kim; Chanyoung Kim; Insuk Lee

Arabidopsis thaliana is a reference plant that has been studied intensively for several decades. Recent advances in high-throughput experimental technology have enabled the generation of an unprecedented amount of data from A. thaliana, which has facilitated data-driven approaches to unravel the genetic organization of plant phenotypes. We previously published a description of a genome-scale functional gene network for A. thaliana, AraNet, which was constructed by integrating multiple co-functional gene networks inferred from diverse data types, and we demonstrated the predictive power of this network for complex phenotypes. More recently, we have observed significant growth in the availability of omics data for A. thaliana as well as improvements in data analysis methods that we anticipate will further enhance the integrated database of co-functional networks. Here, we present an updated co-functional gene network for A. thaliana, AraNet v2 (available at http://www.inetbio.org/aranet), which covers approximately 84% of the coding genome. We demonstrate significant improvements in both genome coverage and accuracy. To enhance the usability of the network, we implemented an AraNet v2 web server, which generates functional predictions for A. thaliana and 27 nonmodel plant species using an orthology-based projection of nonmodel plant genes on the A. thaliana gene network.


Nucleic Acids Research | 2014

YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae

Hanhae Kim; Junha Shin; Eiru Kim; Hyojin Kim; Sohyun Hwang; Jung Eun Shim; Insuk Lee

Saccharomyces cerevisiae, i.e. baker’s yeast, is a widely studied model organism in eukaryote genetics because of its simple protocols for genetic manipulation and phenotype profiling. The high abundance of publicly available data that has been generated through diverse ‘omics’ approaches has led to the use of yeast for many systems biology studies, including large-scale gene network modeling to better understand the molecular basis of the cellular phenotype. We have previously developed a genome-scale gene network for yeast, YeastNet v2, which has been used for various genetics and systems biology studies. Here, we present an updated version, YeastNet v3 (available at http://www.inetbio.org/yeastnet/), that significantly improves the prediction of gene–phenotype associations. The extended genome in YeastNet v3 covers up to 5818 genes (∼99% of the coding genome) wired by 362 512 functional links. YeastNet v3 provides a new web interface to run the tools for network-guided hypothesis generations. YeastNet v3 also provides edge information for all data-specific networks (∼2 million functional links) as well as the integrated networks. Therefore, users can construct alternative versions of the integrated network by applying their own data integration algorithm to the same data-specific links.


Nucleic Acids Research | 2013

JiffyNet: a web-based instant protein network modeler for newly sequenced species

Eiru Kim; Hanhae Kim; Insuk Lee

Revolutionary DNA sequencing technology has enabled affordable genome sequencing for numerous species. Thousands of species already have completely decoded genomes, and tens of thousands more are in progress. Naturally, parallel expansion of the functional parts list library is anticipated, yet genome-level understanding of function also requires maps of functional relationships, such as functional protein networks. Such networks have been constructed for many sequenced species including common model organisms. Nevertheless, the majority of species with sequenced genomes still have no protein network models available. Moreover, biologists might want to obtain protein networks for their species of interest on completion of the genome projects. Therefore, there is high demand for accessible means to automatically construct genome-scale protein networks based on sequence information from genome projects only. Here, we present a public web server, JiffyNet, specifically designed to instantly construct genome-scale protein networks based on associalogs (functional associations transferred from a template network by orthology) for a query species with only protein sequences provided. Assessment of the networks by JiffyNet demonstrated generally high predictive ability for pathway annotations. Furthermore, JiffyNet provides network visualization and analysis pages for wide variety of molecular concepts to facilitate network-guided hypothesis generation. JiffyNet is freely accessible at http://www.jiffynet.org.


Scientific Reports | 2016

Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke

Ji Yong Lee; Eiru Kim; Seong Mi Choi; Dong-Wook Kim; Kwang Pyo Kim; Insuk Lee; Han Soo Kim

Transplantation of mesenchymal stem cells (MSCs) was reported to improve functional outcomes in a rat model of ischemic stroke, and subsequent studies suggest that MSC-derived microvesicles (MVs) can replace the beneficial effects of MSCs. Here, we evaluated three different MSC-derived MVs, including MVs from untreated MSCs (MSC-MVs), MVs from MSCs treated with normal rat brain extract (NBE-MSC-MVs), and MVs from MSCs treated with stroke-injured rat brain extract (SBE-MSC-MVs), and tested their effects on ischemic brain injury induced by permanent middle cerebral artery occlusion (pMCAO) in rats. NBE-MSC-MVs and SBE-MSC-MVs had significantly greater efficacy than MSC-MVs for ameliorating ischemic brain injury with improved functional recovery. We found similar profiles of key signalling proteins in NBE-MSC-MVs and SBE-MSC-MVs, which account for their similar therapeutic efficacies. Immunohistochemical analyses suggest that brain-extract—treated MSC-MVs reduce inflammation, enhance angiogenesis, and increase endogenous neurogenesis in the rat brain. We performed mass spectrometry proteomic analyses and found that the total proteomes of brain-extract—treated MSC-MVs are highly enriched for known vesicular proteins. Notably, MSC-MV proteins upregulated by brain extracts tend to be modular for tissue repair pathways. We suggest that MSC-MV proteins stimulated by the brain microenvironment are paracrine effectors that enhance MSC therapy for stroke injury.


Nucleic Acids Research | 2014

MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network

Sohyun Hwang; Eiru Kim; Sunmo Yang; Edward M. Marcotte; Insuk Lee

Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin.


Nucleic Acids Research | 2016

MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates

Eiru Kim; Sohyun Hwang; Hyojin Kim; Hongseok Shim; Byunghee Kang; Sunmo Yang; Jae Ho Shim; Seung Yeon Shin; Edward M. Marcotte; Insuk Lee

Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields.


Nucleic Acids Research | 2017

SoyNet: a database of co-functional networks for soybean Glycine max.

Eiru Kim; Sohyun Hwang; Insuk Lee

Soybean (Glycine max) is a legume crop with substantial economic value, providing a source of oil and protein for humans and livestock. More than 50% of edible oils consumed globally are derived from this crop. Soybean plants are also important for soil fertility, as they fix atmospheric nitrogen by symbiosis with microorganisms. The latest soybean genome annotation (version 2.0) lists 56 044 coding genes, yet their functional contributions to crop traits remain mostly unknown. Co-functional networks have proven useful for identifying genes that are involved in a particular pathway or phenotype with various network algorithms. Here, we present SoyNet (available at www.inetbio.org/soynet), a database of co-functional networks for G. max and a companion web server for network-based functional predictions. SoyNet maps 1 940 284 co-functional links between 40 812 soybean genes (72.8% of the coding genome), which were inferred from 21 distinct types of genomics data including 734 microarrays and 290 RNA-seq samples from soybean. SoyNet provides a new route to functional investigation of the soybean genome, elucidating genes and pathways of agricultural importance.


Nucleic Acids Research | 2015

FlyNet: a versatile network prioritization server for the Drosophila community

Junha Shin; Sunmo Yang; Eiru Kim; Chan Yeong Kim; Hongseok Shim; Ara Cho; Hyojin Kim; Sohyun Hwang; Jung Eun Shim; Insuk Lee

Drosophila melanogaster (fruit fly) has been a popular model organism in animal genetics due to the high accessibility of reverse-genetics tools. In addition, the close relationship between the Drosophila and human genomes rationalizes the use of Drosophila as an invertebrate model for human neurobiology and disease research. A platform technology for predicting candidate genes or functions would further enhance the usefulness of this long-established model organism for gene-to-phenotype mapping. Recently, the power of network prioritization for gene-to-phenotype mapping has been demonstrated in many organisms. Here we present a network prioritization server dedicated to Drosophila that covers ∼95% of the coding genome. This server, dubbed FlyNet, has several distinctive features, including (i) prioritization for both genes and functions; (ii) two complementary network algorithms: direct neighborhood and network diffusion; (iii) spatiotemporal-specific networks as an additional prioritization strategy for traits associated with a specific developmental stage or tissue and (iv) prioritization for human disease genes. FlyNet is expected to serve as a versatile hypothesis-generation platform for genes and functions in the study of basic animal genetics, developmental biology and human disease. FlyNet is available for free at http://www.inetbio.org/flynet.

Collaboration


Dive into the Eiru Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward M. Marcotte

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge