Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sohyun Hwang is active.

Publication


Featured researches published by Sohyun Hwang.


PLOS Genetics | 2011

Towards Establishment of a Rice Stress Response Interactome

Young-Su Seo; Mawsheng Chern; Laura E. Bartley; Muho Han; Ki-Hong Jung; Insuk Lee; Harkamal Walia; Todd Richter; Xia Xu; Peijian Cao; Wei Bai; Rajeshwari Ramanan; Fawn Amonpant; Loganathan Arul; Patrick E. Canlas; Randy Ruan; Chang-Jin Park; Xuewei Chen; Sohyun Hwang; Jong-Seong Jeon; Pamela C. Ronald

Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%–60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein–protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genetic dissection of the biotic stress response using a genome-scale gene network for rice

Insuk Lee; Young Su Seo; Dusica Coltrane; Sohyun Hwang; Taeyun Oh; Edward M. Marcotte; Pamela C. Ronald

Rice is a staple food for one-half the worlds population and a model for other monocotyledonous species. Thus, efficient approaches for identifying key genes controlling simple or complex traits in rice have important biological, agricultural, and economic consequences. Here, we report on the construction of RiceNet, an experimentally tested genome-scale gene network for a monocotyledonous species. Many different datasets, derived from five different organisms including plants, animals, yeast, and humans, were evaluated, and 24 of the most useful were integrated into a statistical framework that allowed for the prediction of functional linkages between pairs of genes. Genes could be linked to traits by using guilt-by-association, predicting gene attributes on the basis of network neighbors. We applied RiceNet to an important agronomic trait, the biotic stress response. Using network guilt-by-association followed by focused protein–protein interaction assays, we identified and validated, in planta, two positive regulators, LOC_Os01g70580 (now Regulator of XA21; ROX1) and LOC_Os02g21510 (ROX2), and one negative regulator, LOC_Os06g12530 (ROX3). These proteins control resistance mediated by rice XA21, a pattern recognition receptor. We also showed that RiceNet can accurately predict gene function in another major monocotyledonous crop species, maize. RiceNet thus enables the identification of genes regulating important crop traits, facilitating engineering of pathways critical to crop productivity.


Scientific Reports | 2016

Systematic comparison of variant calling pipelines using gold standard personal exome variants

Sohyun Hwang; Eiru Kim; Insuk Lee; Edward M. Marcotte

The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes.


Nucleic Acids Research | 2015

AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species

Tak Lee; Sunmo Yang; Eiru Kim; Younhee Ko; Sohyun Hwang; Junha Shin; Jung Eun Shim; Hongseok Shim; Hyojin Kim; Chanyoung Kim; Insuk Lee

Arabidopsis thaliana is a reference plant that has been studied intensively for several decades. Recent advances in high-throughput experimental technology have enabled the generation of an unprecedented amount of data from A. thaliana, which has facilitated data-driven approaches to unravel the genetic organization of plant phenotypes. We previously published a description of a genome-scale functional gene network for A. thaliana, AraNet, which was constructed by integrating multiple co-functional gene networks inferred from diverse data types, and we demonstrated the predictive power of this network for complex phenotypes. More recently, we have observed significant growth in the availability of omics data for A. thaliana as well as improvements in data analysis methods that we anticipate will further enhance the integrated database of co-functional networks. Here, we present an updated co-functional gene network for A. thaliana, AraNet v2 (available at http://www.inetbio.org/aranet), which covers approximately 84% of the coding genome. We demonstrate significant improvements in both genome coverage and accuracy. To enhance the usability of the network, we implemented an AraNet v2 web server, which generates functional predictions for A. thaliana and 27 nonmodel plant species using an orthology-based projection of nonmodel plant genes on the A. thaliana gene network.


Nucleic Acids Research | 2014

YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae

Hanhae Kim; Junha Shin; Eiru Kim; Hyojin Kim; Sohyun Hwang; Jung Eun Shim; Insuk Lee

Saccharomyces cerevisiae, i.e. baker’s yeast, is a widely studied model organism in eukaryote genetics because of its simple protocols for genetic manipulation and phenotype profiling. The high abundance of publicly available data that has been generated through diverse ‘omics’ approaches has led to the use of yeast for many systems biology studies, including large-scale gene network modeling to better understand the molecular basis of the cellular phenotype. We have previously developed a genome-scale gene network for yeast, YeastNet v2, which has been used for various genetics and systems biology studies. Here, we present an updated version, YeastNet v3 (available at http://www.inetbio.org/yeastnet/), that significantly improves the prediction of gene–phenotype associations. The extended genome in YeastNet v3 covers up to 5818 genes (∼99% of the coding genome) wired by 362 512 functional links. YeastNet v3 provides a new web interface to run the tools for network-guided hypothesis generations. YeastNet v3 also provides edge information for all data-specific networks (∼2 million functional links) as well as the integrated networks. Therefore, users can construct alternative versions of the integrated network by applying their own data integration algorithm to the same data-specific links.


Nature Protocols | 2011

Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

Sohyun Hwang; Seung Y. Rhee; Edward M. Marcotte; Insuk Lee

AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests.


Nucleic Acids Research | 2014

WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans

Ara Cho; Junha Shin; Sohyun Hwang; Chanyoung Kim; Hongseok Shim; Hyojin Kim; Hanhae Kim; Insuk Lee

High-throughput experimental technologies gradually shift the paradigm of biological research from hypothesis-validation toward hypothesis-generation science. Translating diverse types of large-scale experimental data into testable hypotheses, however, remains a daunting task. We previously demonstrated that heterogeneous genomics data can be integrated into a single genome-scale gene network with high prediction power for ribonucleic acid interference (RNAi) phenotypes in Caenorhabditis elegans, a popular metazoan model in the study of developmental biology, neurobiology and genetics. Here, we present WormNet version 3 (v3), which is a new network-assisted hypothesis-generating server for C. elegans. WormNet v3 includes major updates to the base gene network, which substantially improved predictions of RNAi phenotypes. The server generates various gene network-based hypotheses using three complementary network methods: (i) a phenotype-centric approach to ‘find new members for a pathway’; (ii) a gene-centric approach to ‘infer functions from network neighbors’ and (iii) a context-centric approach to ‘find context-associated hub genes’, which is a new method to identify key genes that mediate physiology within a specific context. For example, we demonstrated that the context-centric approach can be used to identify potential molecular targets of toxic chemicals. WormNet v3 is freely accessible at http://www.inetbio.org/wormnet.


Genome Biology | 2012

RIDDLE: reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network

Peggy I. Wang; Sohyun Hwang; Rodney P. Kincaid; Christopher S. Sullivan; Insuk Lee; Edward M. Marcotte

The growing availability of large-scale functional networks has promoted the development of many successful techniques for predicting functions of genes. Here we extend these network-based principles and techniques to functionally characterize whole sets of genes. We present RIDDLE (Reflective Diffusion and Local Extension), which uses well developed guilt-by-association principles upon a human gene network to identify associations of gene sets. RIDDLE is particularly adept at characterizing sets with no annotations, a major challenge where most traditional set analyses fail. Notably, RIDDLE found microRNA-450a to be strongly implicated in ocular diseases and development. A web application is available at http://www.functionalnet.org/RIDDLE.


Scientific Reports | 2015

Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans

Hanhae Kim; Kwang Woo Jung; Shinae Maeng; Ying-Lien Chen; Junha Shin; Jung Eun Shim; Sohyun Hwang; Guilhem Janbon; Taeyup Kim; Joseph Heitman; Yong Sun Bahn; Insuk Lee

Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans.


Nucleic Acids Research | 2014

MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network

Sohyun Hwang; Eiru Kim; Sunmo Yang; Edward M. Marcotte; Insuk Lee

Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin.

Collaboration


Dive into the Sohyun Hwang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward M. Marcotte

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge