Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chang Yin is active.

Publication


Featured researches published by Chang Yin.


Circulation Research | 2003

Sildenafil Induces Delayed Preconditioning Through Inducible Nitric Oxide Synthase–Dependent Pathway in Mouse Heart

Fadi N. Salloum; Chang Yin; Lei Xi; Rakesh C. Kukreja

Sildenafil citrate (Viagra) is the most widely used drug for treating erectile dysfunction in men. We recently demonstrated that it induces potent protective effects against ischemia-reperfusion (I-R) injury in rabbit hearts through the opening of mitochondrial ATP-dependent K+ channels. In the present study, we investigated the role of the NO-dependent signaling pathway in delayed cardioprotection by sildenafil. Adult male ICR mice were treated with saline or sildenafil (0.7 mg/kg IP) 24 hours before global I-R in the Langendorff mode. Infarct size was reduced from 27.6±3.3% in saline-treated control mice to 6.9±1.2% in sildenafil-treated mice (mean±SEM, P <0.05) without compromising cardiac function. Reverse transcription–polymerase chain reaction revealed a transient increase in endothelial and inducible NO synthase (eNOS and iNOS, respectively) mRNA in sildenafil-treated mice, peaking at 45 minutes (eNOS) and 2 hours (iNOS) after sildenafil injection. The magnitude of mRNA increase was more pronounced for iNOS than for eNOS. In addition, a significant increase in both iNOS and eNOS protein was detected 24 hours after sildenafil treatment. A selective inhibitor of iNOS, 1400W (10 mg/kg IP given 30 minutes before I-R), abolished sildenafil-induced protection (23.7±2.8%, P <0.05 versus sildenafil). These data suggest that the induction of NO synthase isoforms is an essential component of the signaling mechanism for sildenafil-induced delayed preconditioning. However, iNOS appears to be the primary isoform that mediates the robust cardioprotection.


Circulation Research | 2009

A Novel Role of MicroRNA in Late Preconditioning Upregulation of Endothelial Nitric Oxide Synthase and Heat Shock Protein 70

Chang Yin; Fadi N. Salloum; Rakesh C. Kukreja

MicroRNAs (miRNAs) are noncoding RNAs of 18 to 24 nucleotides that are involved in posttranscriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through upregulating proteins including endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and heat shock protein (HSP)70, which are implicated in the late-phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricular wall of mice, and, 48 hours later, the hearts were subjected to regional ischemia/reperfusion injury by left anterior descending artery ligation for 30 minutes followed by reperfusion for 24 hour. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. HSF-1 (heat shock transcription factor 1) and HSP70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against ischemia/reperfusion injury, as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through upregulating eNOS, HSP70, and the HSP70 transcription factor HSF-1.Micro-RNAs (miRNAs) are non-coding RNAs of 18–24 nucleotides that are involved in post-transcriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through up-regulating proteins including eNOS/iNOS and HSP70 which are implicated in the late phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricle wall of mice and, 48 h later, the hearts were subjected to regional ischemia/reperfusion (I/R) injury by LAD ligation for 30 min followed by reperfusion for 24 h. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21 and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. Heat shock transcription factor 1 (HSF-1) and HSP-70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against I/R injury as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through up-regulating eNOS, HSP70 and its transcription factor HSF-1.


FEBS Letters | 2008

Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice.

Chang Yin; Xiaoyin Wang; Rakesh C. Kukreja

We investigated the role of microRNAs (miRNA) in protection against ischemia/reperfusion (I/R) injury in heart. Mice subjected to cytoprotective heat‐shock (HS) showed a significant increase of miRNA‐1, miRNA‐21 and miRNA‐24 in the heart. miRNAs isolated from HS mice and injected into non‐HS mice significantly reduced infarct size after I/R injury, which was associated with the inhibition of pro‐apoptotic genes and increase in anti‐apoptotic genes. Chemically synthesized miRNA‐21 also reduced infarct size, whereas a miRNA‐21 inhibitor abolished this effect. Overall, these studies for the first time provide evidence for the potential role of endogenously synthesized miRNAs in cardioprotection following I/R injury.


Molecular Pharmacology | 2011

MicroRNAs: New Players in Cardiac Injury and Protection

Rakesh C. Kukreja; Chang Yin; Fadi N. Salloum

MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. Over 700 miRNAs have been identified and sequenced in humans, and the number of miRNA genes is estimated at more than 1000. Individual miRNA is functionally important as a transcription factor because it has the ability to regulate the expression of multiple genes through binding to its target with imperfect or perfect complement. In the heart, miRNAs have been involved in several clinical scenarios, such as ischemia/reperfusion (I/R) injury and heart failure suggesting that regulation of their function could be used as a novel cardioprotective strategy. In particular, miRNA-1, miRNA-21, miRNA-24, miRNA-29, miRNA-92a, miRNA-126, miRNA-133, miRNA-320, miRNA-199a, miRNA-208, and miRNA-195 have been shown to be regulated after I/R injury. Because tissue miRNAs can be released into circulating blood, they also offer exciting new opportunities for developing sensitive biomarkers, including miRNA-1, miRNA-126, miR-208, and miRNA-499, for acute myocardial infarction and other cardiac diseases.


Circulation-cardiovascular Genetics | 2014

Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice

Stefano Toldo; Anindita Das; Eleonora Mezzaroma; Vinh Q Chau; Carlo Marchetti; David Durrant; Arun Samidurai; Benjamin W. Van Tassell; Chang Yin; Ramzi Ockaili; Navin Vigneshwar; Nitai D. Mukhopadhyay; Rakesh C. Kukreja; Antonio Abbate; Fadi N. Salloum

Background—Maintaining physiological levels of hydrogen sulfide during ischemia is necessary to limit injury to the heart. Because of the anti-inflammatory effects of hydrogen sulfide, we proposed that the hydrogen sulfide donor, sodium sulfide (Na2S), would attenuate myocardial injury through upregulation of protective microRNA-21 (miR-21) and suppression of the inflammasome, a macromolecular structure that amplifies inflammation and mediates further injury. Methods and Results—Na2S-induced miR-21 expression was measured by quantitative polymerase chain reaction in adult primary rat cardiomyocytes and in the mouse heart. We measured inflammasome formation and activity in cardiomyocytes challenged with lipopolysaccharide and ATP or simulated ischemia/reoxygenation and in the heart after regional myocardial ischemia/reperfusion, in the presence or absence of Na2S. To assess the direct anti-inflammatory effects of hydrogen sulfide in vivo, we used a peritonitis model by way of intraperitoneal injection of zymosan A. Na2S attenuated inflammasome formation and activity, measured by counting cytoplasmic aggregates of the scaffold protein apoptosis speck-like protein containing a caspase-recruitment domain (−57%) and caspase-1 activity (−50%) in isolated cardiomyocytes and in the mouse heart (all P<0.05). Na2S also inhibited apoptosis (−38%) and necrosis (−43%) in cardiomyocytes in vitro and reduced myocardial infarct size (−63%) after ischemia/reperfusion injury in vivo (all P<0.05). These protective effects were absent in cells treated with the miR-21 eraser, antagomiR-21, and in miR-21 knockout mice. Na2S also limited the severity of inflammasome-dependent inflammation in the model of peritonitis (P<0.05) in wild-type but not in miR-21 knockout mice. Conclusions—Na2S induces cardioprotective effects through miR-21–dependent attenuation of ischemic and inflammatory injury in cardiomyocytes.


Journal of Cardiovascular Pharmacology | 2010

Role of microRNAs in cardiac preconditioning.

Fadi N. Salloum; Chang Yin; Rakesh C. Kukreja

Preconditioning (PC) of the heart by sublethal ischemia, mild heat shock, or hypoxia has evolved as a powerful experimental tool to discover novel signaling mechanisms in cardioprotection. The ultimate goal is to determine novel therapeutic targets for potential application in humans to protect the heart against ischemia-related injuries. In recent years, there has been a tremendous interest in understanding the role of small noncoding RNAs, microRNAs (miRs), in cardiovascular diseases. miRs have been recognized as regulators of gene expression by destabilization and translational inhibition of target messenger RNAs. Studies have shown that several miRs, including miR-1, miR-133, miR-21, miR-126, miR-320, miR-92a, and miR-199a, are regulated after preconditioning and play an active role in protecting the heart against ischemia/reperfusion injury. These miRs also drive the synthesis of important cardioprotective proteins including heat shock protein (HSP)-70, endothelial nitric oxide synthase, inducible nitric oxide synthase, HSP-20, Sirt1, and hypoxia-inducible factor 1α. We believe that identification and targeted delivery of miR(s) in the heart could have an immense therapeutic potential in reducing myocardial infarction in patients suffering from heart disease. See Editorial, MicroRNA: Redefining Mechanisms in Cardiovascular Diseases by Maha Abdellatif, Journal of Cardiovascular Pharmacology 2010;56:441-443.


Experimental Biology and Medicine | 2015

Beetroot juice reduces infarct size and improves cardiac function following ischemia–reperfusion injury: Possible involvement of endogenous H2S:

Fadi N. Salloum; Gregory R Sturz; Chang Yin; Shabina Rehman; Nicholas N. Hoke; Rakesh C. Kukreja; Lei Xi

Ingestion of high dietary nitrate in the form of beetroot juice (BRJ) has been shown to exert antihypertensive effects in humans through increasing cyclic guanosine monophosphate (cGMP) levels. Since enhanced cGMP protects against myocardial ischemia–reperfusion (I/R) injury through upregulation of hydrogen sulfide (H2S), we tested the hypothesis that BRJ protects against I/R injury via H2S. Adult male CD-1 mice received either regular drinking water or those dissolved with BRJ powder (10 g/L, containing ∼0.7 mM nitrate). Seven days later, the hearts were explanted for molecular analyses. Subsets of mice were subjected to I/R injury by occlusion of the left coronary artery for 30 min and reperfusion for 24 h. A specific inhibitor of H2S producing enzyme – cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG, 50 mg/kg) was given i.p. 30 min before ischemia. Myocardial infarct size was significantly reduced in BRJ-fed mice (15.8 ± 3.2%) versus controls (46.5 ± 3.5%, mean ± standard error [SE], n = 6/group, P < .05). PAG completely blocked the infarct-limiting effect of BRJ. Moreover, BRJ significantly preserved ventricular function following I/R. Myocardial levels of H2S and its putative protein target – vascular endothelial growth factor receptor 2 (VEGFR2) were significantly increased by BRJ intake, whereas CSE mRNA and protein content did not change. Interestingly, the BRJ-induced cardioprotection was not associated with elevated blood nitrate–nitrite levels following I/R nor induction of cardiac peroxiredoxin 5, a mitochondrial antioxidant enzyme previously linked to nitrate-induced cardioprotection. We conclude that BRJ ingestion protects against post-I/R myocardial infarction and ventricular dysfunction possibly through CSE-mediated endogenous H2S generation. BRJ could be a promising natural and inexpensive nutraceutical supplement to reduce cardiac I/R injury in patients.


Circulation Research | 2009

A Novel Role of MicroRNA in Late Preconditioning

Chang Yin; Fadi N. Salloum; Rakesh C. Kukreja

MicroRNAs (miRNAs) are noncoding RNAs of 18 to 24 nucleotides that are involved in posttranscriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through upregulating proteins including endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and heat shock protein (HSP)70, which are implicated in the late-phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricular wall of mice, and, 48 hours later, the hearts were subjected to regional ischemia/reperfusion injury by left anterior descending artery ligation for 30 minutes followed by reperfusion for 24 hour. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. HSF-1 (heat shock transcription factor 1) and HSP70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against ischemia/reperfusion injury, as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through upregulating eNOS, HSP70, and the HSP70 transcription factor HSF-1.Micro-RNAs (miRNAs) are non-coding RNAs of 18–24 nucleotides that are involved in post-transcriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through up-regulating proteins including eNOS/iNOS and HSP70 which are implicated in the late phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricle wall of mice and, 48 h later, the hearts were subjected to regional ischemia/reperfusion (I/R) injury by LAD ligation for 30 min followed by reperfusion for 24 h. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21 and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. Heat shock transcription factor 1 (HSF-1) and HSP-70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against I/R injury as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through up-regulating eNOS, HSP70 and its transcription factor HSF-1.


Circulation Research | 2009

A novel role of microRNA in late preconditioning: upregulation of eNOS and HSP70

Chang Yin; Fadi N. Salloum; Rakesh C. Kukreja

MicroRNAs (miRNAs) are noncoding RNAs of 18 to 24 nucleotides that are involved in posttranscriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through upregulating proteins including endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and heat shock protein (HSP)70, which are implicated in the late-phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricular wall of mice, and, 48 hours later, the hearts were subjected to regional ischemia/reperfusion injury by left anterior descending artery ligation for 30 minutes followed by reperfusion for 24 hour. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. HSF-1 (heat shock transcription factor 1) and HSP70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against ischemia/reperfusion injury, as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through upregulating eNOS, HSP70, and the HSP70 transcription factor HSF-1.Micro-RNAs (miRNAs) are non-coding RNAs of 18–24 nucleotides that are involved in post-transcriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through up-regulating proteins including eNOS/iNOS and HSP70 which are implicated in the late phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricle wall of mice and, 48 h later, the hearts were subjected to regional ischemia/reperfusion (I/R) injury by LAD ligation for 30 min followed by reperfusion for 24 h. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21 and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. Heat shock transcription factor 1 (HSF-1) and HSP-70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against I/R injury as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through up-regulating eNOS, HSP70 and its transcription factor HSF-1.


International Journal of Molecular Sciences | 2018

Irradiation-Induced Cardiac Connexin-43 and miR-21 Responses Are Hampered by Treatment with Atorvastatin and Aspirin

Viczenczova C; Branislav Kura; Tamara Egan Benova; Chang Yin; Rakesh C. Kukreja; Jan Slezak; Narcis Tribulova; Barbara Szeiffova Bacova

Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.

Collaboration


Dive into the Chang Yin's collaboration.

Top Co-Authors

Avatar

Rakesh C. Kukreja

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fadi N. Salloum

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Lei Xi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Anindita Das

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Ramzi Ockaili

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nicholas N. Hoke

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Shabina Rehman

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Vinh Q Chau

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Abbate

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge