Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rakesh C. Kukreja is active.

Publication


Featured researches published by Rakesh C. Kukreja.


Journal of Biological Chemistry | 2005

Phosphodiesterase-5 Inhibitor Sildenafil Preconditions Adult Cardiac Myocytes against Necrosis and Apoptosis ESSENTIAL ROLE OF NITRIC OXIDE SIGNALING

Anindita Das; Lei Xi; Rakesh C. Kukreja

We investigated the effect of sildenafil in protection against necrosis or apoptosis in cardiomyocytes. Adult mouse ventricular myocytes were treated with sildenafil (1 or 10 μm) for 1 h before 40 min of simulated ischemia (SI). Necrosis was determined by trypan blue exclusion and lactate dehydrogenase release following SI alone or plus 1 or 18 h of reoxygenation (RO). Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling assay and mitochondrial membrane potential measured using a fluorescent probe 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1). Sildenafil reduced necrosis as indicated by decrease in trypan blue-positive myocytes and leakage of lactate dehydrogenase compared with untreated cells after either SI or SI-RO. The number of terminal deoxynucleotidyl transferase-mediated nick end labeling-positive myocytes or loss of JC-1 fluorescence following SI and 18 h of RO was attenuated in the sildenafil-treated group with concomitant inhibition of caspase 3 activity. An early increase in Bcl-2 to Bax ratio with sildenafil treatment was also observed in myocytes after SI-RO. The increase of Bcl-2 expression by sildenafil was inhibited by nitric-oxide synthase (NOS) inhibitor, l-nitro-amino-methyl-ester. The drug also enhanced mRNA and protein content of inducible NOS (iNOS) and endothelial NOS (eNOS) in the myocytes. Sildenafil-induced protection against necrosis and apoptosis was absent in the myocytes derived from iNOS knock-out mice and was attenuated in eNOS knock-out myocytes. The up-regulation of Bcl-2 expression by sildenafil was also absent in iNOS-deficient myocytes. Reverse transcription-PCR, Western blots, and immunohistochemical assay confirmed the expression of phosphodiesterase-5 in mouse cardiomyocytes. These data provide strong evidence for a direct protective effect of sildenafil against necrosis and apoptosis through NO signaling pathway. The results may have possible therapeutic potential in preventing myocyte cell death following ischemia/reperfusion.


Circulation | 2005

Phosphodiesterase-5 Inhibition With Sildenafil Attenuates Cardiomyocyte Apoptosis and Left Ventricular Dysfunction in a Chronic Model of Doxorubicin Cardiotoxicity

Patrick W. Fisher; Fadi N. Salloum; Anindita Das; Haroon Hyder; Rakesh C. Kukreja

Background—Sildenafil, a phosphodiesterase-5 inhibitor, induces cardioprotection against ischemia/reperfusion injury via opening of mitochondrial KATP channels. It is unclear whether sildenafil would provide similar protection from doxorubicin-induced cardiotoxicity. Methods and Results—Male ICR mice were randomized to 1 of 4 treatments: saline, sildenafil, doxorubicin (5 mg/kg IP), and sildenafil (0.7 mg/kg IP) plus doxorubicin (n=6 per group). Apoptosis was assessed with the use of terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling and in situ oligo ligation methods. Desmin distribution was determined via immunofluorescence. Bcl-2 expression was analyzed by Western blot. Left ventricular function was assessed by measuring developed pressure and rate pressure product in Langendorff mode. ECG changes indicative of doxorubicin cardiotoxicity were also measured. For in vitro studies, adult ventricular cardiomyocytes were exposed to doxorubicin (1 &mgr;mol/L), sildenafil (1 &mgr;mol/L) with or without NG-nitro-l-arginine methyl ester (L-NAME) (100 &mgr;mol/L), or 5-hydroxydecanoate (100 &mgr;mol/L) 1 hour before doxorubicin and incubated for 18 hours. Doxorubicin-treated mice demonstrated increased apoptosis and desmin disruption, which was attenuated in the sildenafil+doxorubicin group. Bcl-2 was decreased in the doxorubicin group but was maintained at basal levels in the sildenafil+doxorubicin group. Left ventricular developed pressure and rate pressure product were significantly depressed in the doxorubicin group but were attenuated in the sildenafil+doxorubicin group. ST interval was significantly increased in the doxorubicin group over 8 weeks. In the sildenafil+doxorubicin group, ST interval remained unchanged from baseline. Doxorubicin caused a significant increase in apoptosis, caspase-3 activation, and disruption of mitochondrial membrane potential in vitro. In contrast, sildenafil significantly protected against doxorubicin cardiotoxicity; however, this protection was abolished by both L-NAME and 5-hydroxydecanoate. Conclusions—Prophylactic treatment with sildenafil prevented apoptosis and left ventricular dysfunction in a chronic model of doxorubicin-induced cardiomyopathy.


Circulation Research | 2003

Sildenafil Induces Delayed Preconditioning Through Inducible Nitric Oxide Synthase–Dependent Pathway in Mouse Heart

Fadi N. Salloum; Chang Yin; Lei Xi; Rakesh C. Kukreja

Sildenafil citrate (Viagra) is the most widely used drug for treating erectile dysfunction in men. We recently demonstrated that it induces potent protective effects against ischemia-reperfusion (I-R) injury in rabbit hearts through the opening of mitochondrial ATP-dependent K+ channels. In the present study, we investigated the role of the NO-dependent signaling pathway in delayed cardioprotection by sildenafil. Adult male ICR mice were treated with saline or sildenafil (0.7 mg/kg IP) 24 hours before global I-R in the Langendorff mode. Infarct size was reduced from 27.6±3.3% in saline-treated control mice to 6.9±1.2% in sildenafil-treated mice (mean±SEM, P <0.05) without compromising cardiac function. Reverse transcription–polymerase chain reaction revealed a transient increase in endothelial and inducible NO synthase (eNOS and iNOS, respectively) mRNA in sildenafil-treated mice, peaking at 45 minutes (eNOS) and 2 hours (iNOS) after sildenafil injection. The magnitude of mRNA increase was more pronounced for iNOS than for eNOS. In addition, a significant increase in both iNOS and eNOS protein was detected 24 hours after sildenafil treatment. A selective inhibitor of iNOS, 1400W (10 mg/kg IP given 30 minutes before I-R), abolished sildenafil-induced protection (23.7±2.8%, P <0.05 versus sildenafil). These data suggest that the induction of NO synthase isoforms is an essential component of the signaling mechanism for sildenafil-induced delayed preconditioning. However, iNOS appears to be the primary isoform that mediates the robust cardioprotection.


Circulation | 2008

Anakinra, a Recombinant Human Interleukin-1 Receptor Antagonist, Inhibits Apoptosis in Experimental Acute Myocardial Infarction

Antonio Abbate; Fadi N. Salloum; Elena Vecile; Anindita Das; Nicholas N. Hoke; Stefania Straino; Giuseppe Biondi-Zoccai; Jon-Erik Houser; Ian Z. Qureshi; Evan D. Ownby; Edoardo Gustini; Luigi M. Biasucci; Anna Severino; Maurizio C. Capogrossi; George W. Vetrovec; Filippo Crea; Alfonso Baldi; Rakesh C. Kukreja; Aldo Dobrina

Background— Experimental interleukin-1 receptor antagonist gene overexpression has shown that interleukin-1 receptor antagonist is cardioprotective during global cardiac ischemia. The aim of the present study was to test the impact of an exogenous recombinant human interleukin-1 receptor antagonist (anakinra) in experimental acute myocardial infarction. Methods and Results— Two animal studies were conducted: one of immediate anakinra administration during ischemia in the mouse and one of delayed anakinra administration 24 hours after ischemia in the rat. Seventy-eight Institute of Cancer Research mice and 20 Wistar rats underwent surgical coronary artery ligation (or sham operation) and were treated with either anakinra 1 mg/kg or NaCl 0.9% (saline). Treatment was administered during surgery and then daily for 6 doses in the mice and starting on day 2 daily for 5 doses in the rats. Twenty-eight mice underwent infarct size assessment 24 hours after surgery, 6 saline-treated mice and 22 mice treated with increasing doses of anakinra (1 mg/kg [n=6], 10 mg/kg [n=6], and 100 mg/kg [n=10]); 6 mice were euthanized at 7 days for protein expression analysis. The remaining animals underwent transthoracic echocardiography before surgery and 7 days later just before death. Cardiomyocyte apoptosis was measured in the peri-infarct regions. The antiapoptotic effect of anakinra was tested in a primary rat cardiomyocyte culture during simulated ischemia and in vitro on caspase-1 and -9 activities. At 7 days, 15 of the 16 mice (94%) treated with anakinra were alive versus 11 of the 20 mice (55%) treated with saline (P=0.013). No differences in infarct size at 24 hours compared with saline were observed with the 1- and 10-mg/kg doses, whereas a 13% reduction in infarct size was found with the 100-mg/kg dose (P=0.015). Treatment with anakinra was associated with a significant reduction in cardiomyocyte apoptosis in both the immediate and delayed treatment groups (3.1±0.2% versus 0.5±0.3% [P<0.001] and 4.2±0.4% versus 1.1±0.2% [P<0.001], respectively). Compared with saline-treated animals, anakinra-treated mice and rats showed signs of more favorable ventricular remodeling. In vitro, anakinra significantly prevented apoptosis induced by simulated ischemia and inhibited caspase-1 and -9 activities. Conclusions— Administration of anakinra within 24 hours of acute myocardial infarction significantly ameliorates the remodeling process by inhibiting cardiomyocyte apoptosis in 2 different experimental animal models of AMI. This may open the door for using anakinra to prevent postischemic cardiac remodeling and heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Opening of mitochondrial KATPchannel induces early and delayed cardioprotective effect: role of nitric oxide

Ramzi Ockaili; Venkata R. Emani; Shinji Okubo; Michael G. Brown; Kavitha Krottapalli; Rakesh C. Kukreja

Opening of mitochondrial ATP-sensitive (mitoKATP) channel with diazoxide induces an early phase (EP) of cardioprotection. It is unknown whether diazoxide also induces a delayed phase (DP) of cardioprotection. Because nitric oxide (NO) modulates ATP sensitivity of the KATP channel, we hypothesized that NO may play a role in diazoxide-induced cardioprotection. Diazoxide (1 mg/kg) was administered either 30 min (for EP) or 24 h (DP) before 30 min of lethal ischemia. Blockers of mitoK(ATP) channel [5-hydroxydecanoate (5-HD)] or NO synthase [N(G)-nitro-L-arginine methyl ester (L-NAME)] were given 10 min before ischemia-reperfusion performed by 30 min of left anterior descending coronary artery occlusion and 3 h of reperfusion. A risk area (RA) was demarcated by Evans blue dye, and infarct size (IS) was measured by tetrazolium staining. Diazoxide caused a decrease in IS (%RA) from 27.8 +/- 4.2% in the vehicle group to 12.9 +/- 1.2% during EP and from 30.4 +/- 4. 2% in vehicle-treated rabbits to 19.6 +/- 2.4% during DP (P < 0.05). IS increased to 31.3 +/- 1.1% and 27.9 +/- 1.0% (EP) and 29.9 +/- 2. 3% and 35.1 +/- 1.8% (DP) with 5-HD and L-NAME, respectively (P < 0. 05). 5-HD and L-NAME caused no proischemic effect in controls. Diazoxide induced both early and delayed anti-ischemic effects via opening of mitoK(ATP) channels, which was NO dependent.Opening of mitochondrial ATP-sensitive (mitoKATP) channel with diazoxide induces an early phase (EP) of cardioprotection. It is unknown whether diazoxide also induces a delayed phase (DP) of cardioprotection. Because nitric oxide (NO) modulates ATP sensitivity of the KATP channel, we hypothesized that NO may play a role in diazoxide-induced cardioprotection. Diazoxide (1 mg/kg) was administered either 30 min (for EP) or 24 h (DP) before 30 min of lethal ischemia. Blockers of mitoKATP channel [5-hydroxydecanoate (5-HD)] or NO synthase [ N G-nitro-l-arginine methyl ester (l-NAME)] were given 10 min before ischemia-reperfusion performed by 30 min of left anterior descending coronary artery occlusion and 3 h of reperfusion. A risk area (RA) was demarcated by Evans blue dye, and infarct size (IS) was measured by tetrazolium staining. Diazoxide caused a decrease in IS (%RA) from 27.8 ± 4.2% in the vehicle group to 12.9 ± 1.2% during EP and from 30.4 ± 4.2% in vehicle-treated rabbits to 19.6 ± 2.4% during DP ( P < 0.05). IS increased to 31.3 ± 1.1% and 27.9 ± 1.0% (EP) and 29.9 ± 2.3% and 35.1 ± 1.8% (DP) with 5-HD andl-NAME, respectively ( P < 0.05). 5-HD andl-NAME caused no proischemic effect in controls. Diazoxide induced both early and delayed anti-ischemic effects via opening of mitoKATP channels, which was NO dependent.


Journal of Biological Chemistry | 2008

Protein Kinase G-dependent Cardioprotective Mechanism of Phosphodiesterase-5 Inhibition Involves Phosphorylation of ERK and GSK3β

Anindita Das; Lei Xi; Rakesh C. Kukreja

Sildenafil, a potent inhibitor of phosphodiesterase-5 (PDE-5) induces powerful protection against myocardial ischemia-reperfusion injury. PDE-5 inhibition increases cGMP levels that activate cGMP-dependent protein kinase (PKG). However, the cause and effect relationship of PKG in sildenafil-induced cardioprotection and the downstream targets of PKG remain unclear. Adult ventricular myocytes were treated with sildenafil and subjected to simulated ischemia and reoxygenation. Sildenafil treatment significantly decreased cardiomyocyte necrosis and apoptosis. The PKG inhibitors, KT5823, guanosine 3′,5′-cyclic monophosphorothioate, 8-(4-chloro-phenylthio) (Rp-8-pCPT-cGMPs), or DT-2 blocked the anti-necrotic and anti-apoptotic effect of sildenafil. Selective knockdown of PKG in cardiomyocytes with adenoviral vector containing short hairpin RNA of PKG also abolished sildenafil-induced protection. Furthermore, intra-coronary infusion of sildenafil in Langendorff-isolated mouse hearts prior to ischemia-reperfusion significantly reduced myocardial infarct size after 20 min ischemia and 30 min reperfusion, which was abrogated by KT5823. Sildenafil significantly increased PKG activity in intact hearts and cardiomyocytes. Sildenafil also enhanced the Bcl-2/Bax ratio, phosphorylation of Akt, ERK1/2, and glycogen synthase kinase 3β. All these changes (except Akt phosphorylation) were significantly blocked by KT5823 and short hairpin RNA of PKG. These studies provide the first evidence for an essential role of PKG in sildenafil-induced cardioprotection. Moreover, our results demonstrate that sildenafil activates a PKG-dependent novel signaling cascade that involves activation of ERK and inhibition of glycogen synthase kinase 3β leading to cytoprotection.


Circulation | 2000

Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice.

Tingcun Zhao; Lei Xi; Jeya Chelliah; Joseph E. Levasseur; Rakesh C. Kukreja

BACKGROUND The mechanism of delayed preconditioning induced by activation of adenosine A(1) receptors (A(1)ARs) is not fully understood. We determined the role of inducible nitric oxide synthase (iNOS) in mediating adenosine-induced late cardioprotection using pharmacological inhibitors and iNOS gene-knockout mice. METHODS AND RESULTS Adult male mice were treated with saline or an A(1)AR agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA). Twenty-four hours later, the hearts were perfused in Langendorff mode and subjected to 30 minutes of global ischemia followed by 30 minutes of reperfusion. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.1 mg/kg IP) and S-methylisothiourea (SMT; 3 mg/kg IP) were used to block A(1)ARs and iNOS, respectively. Infarct size (IS) was measured by triphenyltetrazolium chloride staining, and iNOS expression was measured by Western blots. Myocardial IS was reduced from 24.0+/-3. 2% in the saline group to 12.2+/-2.5% in CCPA-treated mice (P<0.05). The infarct-reducing effect of CCPA was abrogated by DPCPX (29.3+/-3. 4%) and SMT (32.3+/-2.6%) and was absent in mice with targeted ablation of iNOS (23.9+/-1.6%). CCPA produced improvement in postischemic end-diastolic pressure, developed pressure, and rate-pressure product, which was also blocked by DPCPX and SMT. Increased iNOS protein expression observed in CCPA-treated hearts was diminished by DPCPX. CONCLUSIONS Selective activation of A(1)ARs produces delayed cardioprotection against ischemia/reperfusion injury in the mouse. Increased iNOS expression concomitant with the lack of protective effect of A(1)AR activation in iNOS gene-knockout mice suggests a direct cause-and-effect relationship of iNOS in adenosine-induced late cardioprotection.


Circulation Research | 2005

Hypoxia Inducible Factor-1 Activation by Prolyl 4-Hydroxylase-2 Gene Silencing Attenuates Myocardial Ischemia Reperfusion Injury

Ramesh Natarajan; Fadi N. Salloum; Bernard J. Fisher; Rakesh C. Kukreja; Alpha A. Fowler

Hypoxia inducible factor-1 (HIF-1) regulates changes in transcription of key genes such as inducible NO synthase (iNOS) in hypoxic/ischemic environments. In normoxia, HIF-1 activation is controlled by HIF-1&agr;-prolyl 4-hydroxylases, which target HIF-1&agr; for ubiquitination and proteasomal degradation. We hypothesized that normoxic HIF-1 preservation could attenuate cardiac ischemia/reperfusion injury via a preconditioning effect. HIF-1 preservation was achieved by using small interfering RNA (siRNA) to silence murine HIF-1&agr;-prolyl-4 hydroxylase-2 (PHD2). PHD2 siRNA reduced PHD2 mRNA expression 89±1.5% (P<0.001) in a time- and concentration-dependent manner in normoxic murine microvascular endothelial cells (EC). PHD2 silencing in normoxic EC stabilized HIF-1&agr; protein levels while significantly increasing HIF-1 transcriptional activity and iNOS mRNA expression. Wild-type mice infused with PHD2 siRNA (1.5 &mgr;g/g body weight) showed a 61±2.4% (P<0.05) reduction in cardiac PHD2 mRNA within 24 hours. In addition HIF-1&agr; protein levels and HIF-1-dependent iNOS mRNA levels were increased. PHD2 siRNA-transfected hearts from wild-type mice (n=6) subjected to 30 minutes ischemia followed by 60 minutes reperfusion exhibited reduced infarct size when compared with saline-treated controls (9.7±1.9% versus 31.6±1.8%, respectively, P<0.0001, n=6) and to control mice transfected with a nontargeting siRNA control (28.4±3.0%, P<0.0001, n=6). Hearts from iNOS knockout mice receiving PHD2 siRNA by identical injection protocol (n=6) exhibited infarct size indistinguishable from saline controls (28.7±1.3%). These results show that in vitro and in vivo, PHD2 silencing using a siRNA strategy produces transcriptionally active HIF-1. Normoxic activation of HIF-1 in hearts following in vivo PHD2 siRNA administration attenuates reperfusion injury via an iNOS-dependent pathway.


Circulation | 1999

Essential Role of Inducible Nitric Oxide Synthase in Monophosphoryl Lipid A–Induced Late Cardioprotection Evidence From Pharmacological Inhibition and Gene Knockout Mice

Lei Xi; Novlet C. Jarrett; Michael L. Hess; Rakesh C. Kukreja

BACKGROUND Monophosphoryl lipid A (MLA), a nontoxic analogue of endotoxin, is a pharmacological agent that is known to have anti-ischemic effects. Mechanisms involved with the cardioprotection are still unclear. A role for inducible nitric oxide synthase (iNOS) was recently proposed. We tested this hypothesis using S-methylisothiourea (SMT), one of the specific pharmacological inhibitors of iNOS, as well as iNOS gene knockout mice. METHODS AND RESULTS Adult male ICR or B6,129 mice were pretreated with either MLA 35 or 350 microg/kg IP (MLA35 or MLA350) or vehicle 24 hours before global ischemia/reperfusion, which was carried out in a Langendorff isolated perfused heart model (n=8 to 9 per group). Another group of MLA350 mice received SMT 3 mg/kg IP 30 minutes before heart perfusion. Ventricular contractile function and heart rate were not different between the groups during the preischemia and reperfusion periods (P>0.05). Preischemic basal coronary flow was significantly increased in all MLA350 but not MLA35 mice. Myocardial infarct size was reduced significantly, from 26.9+/-2.9% of risk area in vehicle-treated mice to 13.5+/-2.4% in the MLA350 group (mean+/-SEM, P<0.05). This reduction in infarct size was accompanied by augmented nitrite/nitrate accumulation, from 0.23+/-0. 05 nmol/mg protein in the vehicle group to 0.97+/-0.27 nmol/mg protein in MLA350 mice (P<0.01). Infarct size increased significantly, to 22.2+/-2.8% after treatment with SMT in the MLA350 group. Furthermore, MLA350 failed to reduce infarct size in iNOS knockout mice (25.5+/-3.6%). CONCLUSIONS These results demonstrate a direct association of infarct size reduction with increased NO production with MLA350. An obligatory role for iNOS in mediating the cardioprotective effect induced by MLA was confirmed with the pharmacological inhibition and gene knockout mice.


Circulation Research | 2009

A Novel Role of MicroRNA in Late Preconditioning Upregulation of Endothelial Nitric Oxide Synthase and Heat Shock Protein 70

Chang Yin; Fadi N. Salloum; Rakesh C. Kukreja

MicroRNAs (miRNAs) are noncoding RNAs of 18 to 24 nucleotides that are involved in posttranscriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through upregulating proteins including endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and heat shock protein (HSP)70, which are implicated in the late-phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricular wall of mice, and, 48 hours later, the hearts were subjected to regional ischemia/reperfusion injury by left anterior descending artery ligation for 30 minutes followed by reperfusion for 24 hour. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. HSF-1 (heat shock transcription factor 1) and HSP70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against ischemia/reperfusion injury, as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through upregulating eNOS, HSP70, and the HSP70 transcription factor HSF-1.Micro-RNAs (miRNAs) are non-coding RNAs of 18–24 nucleotides that are involved in post-transcriptional regulation of protein expression. Their role in ischemic preconditioning (IPC) is currently unknown. We hypothesized that miRNAs induced after IPC in the heart may create a preconditioned phenotype through up-regulating proteins including eNOS/iNOS and HSP70 which are implicated in the late phase protection of IPC. miRNAs were extracted from hearts of ICR mice following IPC. The purified miRNAs were injected in vivo into the left ventricle wall of mice and, 48 h later, the hearts were subjected to regional ischemia/reperfusion (I/R) injury by LAD ligation for 30 min followed by reperfusion for 24 h. IPC caused no changes in miRNA-23b and miRNA-483 whereas miRNA-1, miRNA-21 and miRNA-24 were significantly increased. The IPC-miRNA treatment caused an increase in eNOS mRNA and protein, whereas iNOS was not changed. Heat shock transcription factor 1 (HSF-1) and HSP-70 were also increased with IPC-miRNA treatment versus control. Moreover, injection of IPC-miRNA protected the hearts against I/R injury as shown by a reduction of infarct size as compared with saline or non-IPC miRNA-treated control. We conclude that IPC-induced miRNAs trigger cardioprotection similar to the delayed phase of IPC, possibly through up-regulating eNOS, HSP70 and its transcription factor HSF-1.

Collaboration


Dive into the Rakesh C. Kukreja's collaboration.

Top Co-Authors

Avatar

Fadi N. Salloum

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Lei Xi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Anindita Das

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Ramzi Ockaili

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Michael L. Hess

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Chang Yin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nicholas N. Hoke

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

David Durrant

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Antonio Abbate

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Saisudha Koka

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge