Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramzi Ockaili is active.

Publication


Featured researches published by Ramzi Ockaili.


Circulation | 2009

Chronic Pulmonary Artery Pressure Elevation Is Insufficient to Explain Right Heart Failure

Harm J. Bogaard; Ramesh Natarajan; Scott C. Henderson; Carlin S. Long; Donatas Kraskauskas; Lisa Smithson; Ramzi Ockaili; Joe M. McCord; Norbert F. Voelkel

Background— The most important determinant of longevity in pulmonary arterial hypertension is right ventricular (RV) function, but in contrast to experimental work elucidating the pathobiology of left ventricular failure, there is a paucity of data on the cellular and molecular mechanisms of RV failure. Methods and Results— A mechanical animal model of chronic progressive RV pressure overload (pulmonary artery banding, not associated with structural alterations of the lung circulation) was compared with an established model of angioproliferative pulmonary hypertension associated with fatal RV failure. Isolated RV pressure overload induced RV hypertrophy without failure, whereas in the context of angioproliferative pulmonary hypertension, RV failure developed that was associated with myocardial apoptosis, fibrosis, a decreased RV capillary density, and a decreased vascular endothelial growth factor mRNA and protein expression despite increased nuclear stabilization of hypoxia-induced factor-1α. Induction of myocardial nuclear factor E2-related factor 2 and heme-oxygenase 1 with a dietary supplement (Protandim) prevented fibrosis and capillary loss and preserved RV function despite continuing pressure overload. Conclusions— These data brought into question the commonly held concept that RV failure associated with pulmonary hypertension is due strictly to the increased RV afterload.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Opening of mitochondrial KATPchannel induces early and delayed cardioprotective effect: role of nitric oxide

Ramzi Ockaili; Venkata R. Emani; Shinji Okubo; Michael G. Brown; Kavitha Krottapalli; Rakesh C. Kukreja

Opening of mitochondrial ATP-sensitive (mitoKATP) channel with diazoxide induces an early phase (EP) of cardioprotection. It is unknown whether diazoxide also induces a delayed phase (DP) of cardioprotection. Because nitric oxide (NO) modulates ATP sensitivity of the KATP channel, we hypothesized that NO may play a role in diazoxide-induced cardioprotection. Diazoxide (1 mg/kg) was administered either 30 min (for EP) or 24 h (DP) before 30 min of lethal ischemia. Blockers of mitoK(ATP) channel [5-hydroxydecanoate (5-HD)] or NO synthase [N(G)-nitro-L-arginine methyl ester (L-NAME)] were given 10 min before ischemia-reperfusion performed by 30 min of left anterior descending coronary artery occlusion and 3 h of reperfusion. A risk area (RA) was demarcated by Evans blue dye, and infarct size (IS) was measured by tetrazolium staining. Diazoxide caused a decrease in IS (%RA) from 27.8 +/- 4.2% in the vehicle group to 12.9 +/- 1.2% during EP and from 30.4 +/- 4. 2% in vehicle-treated rabbits to 19.6 +/- 2.4% during DP (P < 0.05). IS increased to 31.3 +/- 1.1% and 27.9 +/- 1.0% (EP) and 29.9 +/- 2. 3% and 35.1 +/- 1.8% (DP) with 5-HD and L-NAME, respectively (P < 0. 05). 5-HD and L-NAME caused no proischemic effect in controls. Diazoxide induced both early and delayed anti-ischemic effects via opening of mitoK(ATP) channels, which was NO dependent.Opening of mitochondrial ATP-sensitive (mitoKATP) channel with diazoxide induces an early phase (EP) of cardioprotection. It is unknown whether diazoxide also induces a delayed phase (DP) of cardioprotection. Because nitric oxide (NO) modulates ATP sensitivity of the KATP channel, we hypothesized that NO may play a role in diazoxide-induced cardioprotection. Diazoxide (1 mg/kg) was administered either 30 min (for EP) or 24 h (DP) before 30 min of lethal ischemia. Blockers of mitoKATP channel [5-hydroxydecanoate (5-HD)] or NO synthase [ N G-nitro-l-arginine methyl ester (l-NAME)] were given 10 min before ischemia-reperfusion performed by 30 min of left anterior descending coronary artery occlusion and 3 h of reperfusion. A risk area (RA) was demarcated by Evans blue dye, and infarct size (IS) was measured by tetrazolium staining. Diazoxide caused a decrease in IS (%RA) from 27.8 ± 4.2% in the vehicle group to 12.9 ± 1.2% during EP and from 30.4 ± 4.2% in vehicle-treated rabbits to 19.6 ± 2.4% during DP ( P < 0.05). IS increased to 31.3 ± 1.1% and 27.9 ± 1.0% (EP) and 29.9 ± 2.3% and 35.1 ± 1.8% (DP) with 5-HD andl-NAME, respectively ( P < 0.05). 5-HD andl-NAME caused no proischemic effect in controls. Diazoxide induced both early and delayed anti-ischemic effects via opening of mitoKATP channels, which was NO dependent.


Circulation | 2009

Phosphodiesterase-5 Inhibitor, Tadalafil, Protects Against Myocardial Ischemia/Reperfusion Through Protein-Kinase G–Dependent Generation of Hydrogen Sulfide

Fadi N. Salloum; Vinh Q Chau; Nicholas N. Hoke; Antonio Abbate; Amit Varma; Ramzi Ockaili; Stefano Toldo; Rakesh C. Kukreja

Background— Tadalafil is a novel long-acting inhibitor of phosphodiesterase-5. Because cGMP-dependent protein kinase (PKG) signaling plays a key role in cardioprotection, we hypothesized that PKG activation with tadalafil would limit myocardial ischemia/reperfusion (I/R) injury and dysfunction. Additionally, we contemplated that cardioprotection with tadalafil is mediated by hydrogen sulfide (H2S) signaling in a PKG-dependent fashion. Methods and Results— After baseline transthoracic echocardiography (TTE), adult ICR mice were injected i.p. with vehicle (10% DMSO) or tadalafil (1 mg/kg) with or without KT5823 (KT, PKG blocker, 1 mg/kg) or dl-propargylglycine (PAG, Cystathionine-γ-lyase [CSE, H2S-producing enzyme] blocker; 50 mg/kg) 1 hour before coronary artery ligation for 30 minutes and reperfusion for 24 hours, whereas C57BL wild-type and CSE-knockout mice were treated with either vehicle or tadalafil. After reperfusion, TTE was performed and hearts were collected for infarct size (IS) measurement using TTC staining. Survival was increased with tadalafil (95%) compared with control (65%, P<0.05). Infarct size was reduced with tadalafil (13.2±1.7%) compared to vehicle (40.6±2.5%; P<0.05). KT and PAG abolished tadalafil-induced protection (IS: 39.2±1% and 51.2±2.4%, respectively) similar to genetic deletion of CSE (47.2±5.1%). Moreover, tadalafil preserved fractional shortening (FS: 31±1.5%) compared to control (FS: 22±4.8%, P<0.05). Baseline FS was 44±1.7%. KT and PAG abrogated the preservation of LV function with tadalafil by decline in FS to 17±1% and 23±3%, respectively. Compared to vehicle, myocardial H2S production was significantly increased with tadalafil and was abolished with KT. Conclusion— PKG activation with tadalafil limits myocardial infarction and preserves LV function through H2S signaling.


Circulation Research | 2015

The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR): A New Paradigm for Rigorous, Accurate, and Reproducible Evaluation of Putative Infarct-Sparing Interventions in Mice, Rabbits, and Pigs

Steven P. Jones; Xian Liang Tang; Yiru Guo; Charles Steenbergen; David J. Lefer; Rakesh C. Kukreja; Maiying Kong; Qianhong Li; Shashi Bhushan; Xiaoping Zhu; Junjie Du; Yibing Nong; Heather Stowers; Kazuhisa Kondo; Gregory N. Hunt; Traci Goodchild; Adam Orr; Carlos Chang; Ramzi Ockaili; Fadi N. Salloum; Roberto Bolli

Rationale: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. Objective: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. Methods and Results: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22–25 per group), rabbits (n=11–12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR’s operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center—all with the oversight of an external Protocol Review and Monitoring Committee. Conclusions: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols (“CAESAR protocols”) for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible. # Novelty and Significance {#article-title-41}Rationale: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. Objective: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. Methods and Results: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22–25 per group), rabbits (n=11–12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR’s operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center—all with the oversight of an external Protocol Review and Monitoring Committee. Conclusions: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols (“CAESAR protocols”) for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.


Journal of Molecular and Cellular Cardiology | 2012

Rapamycin protects against myocardial ischemia–reperfusion injury through JAK2–STAT3 signaling pathway

Anindita Das; Fadi N. Salloum; David Durrant; Ramzi Ockaili; Rakesh C. Kukreja

Rapamycin (Sirolimus®) is used to prevent rejection of transplanted organs and coronary restenosis. We reported that rapamycin induced cardioprotection against ischemia-reperfusion (I/R) injury through opening of mitochondrial K(ATP) channels. However, signaling mechanisms in rapamycin-induced cardioprotection are currently unknown. Considering that STAT3 is protective in the heart, we investigated the potential role of this transcription factor in rapamycin-induced protection against (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25mg/kg, i.p.) or vehicle (DMSO) with/without inhibitor of JAK2 (AG-490) or STAT3 (stattic). One hour later, the hearts were subjected to I/R either in Langendorff mode or in situ ligation of left coronary artery. Additionally, primary murine cardiomyocytes were subjected to simulated ischemia-reoxygenation (SI/RO) injury in vitro. For in situ targeted knockdown of STAT3, lentiviral vector containing short hairpin RNA was injected into the left ventricle 3 weeks prior to initiating I/R injury. Infarct size, cardiac function, and cardiomyocyte necrosis and apoptosis were assessed. Rapamycin reduced infarct size, improved cardiac function following I/R, and limited cardiomyocyte necrosis as well as apoptosis following SI/RO which were blocked by AG-490 and stattic. In situ knock-down of STAT3 attenuated rapamycin-induced protection against I/R injury. Rapamycin triggered unique cardioprotective signaling including phosphorylation of ERK, STAT3, eNOS and glycogen synthase kinase-3ß in concert with increased prosurvival Bcl-2 to Bax ratio. Our data suggest that JAK2-STAT3 signaling plays an essential role in rapamycin-induced cardioprotection. We propose that rapamycin is a novel and clinically relevant pharmacological strategy to target STAT3 activation for treatment of myocardial infarction.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide

Fadi N. Salloum; Anindita Das; Arun Samidurai; Nicholas N. Hoke; Vinh Q Chau; Ramzi Ockaili; Johannes-Peter Stasch; Rakesh C. Kukreja

Cinaciguat (BAY 58-2667) is a novel nitric oxide (NO)-independent activator of soluble guanylate cyclase (sGC), which induces cGMP-generation and vasodilation in diseased vessels. We tested the hypothesis that cinaciguat might trigger protection against ischemia/reperfusion (I/R) in the heart and adult cardiomyocytes through cGMP/protein kinase G (PKG)-dependent generation of hydrogen sulfide (H(2)S). Adult New Zealand White rabbits were pretreated with 1 or 10 μg/kg cinaciguat (iv) or 10% DMSO (vehicle) 15 min before I/R or with 10 μg/kg cinaciguat (iv) at reperfusion. Additionally, adult male ICR mice were treated with either cinaciguat (10 μg/kg ip) or vehicle 30 min before I/R or at the onset of reperfusion (10 μg/kg iv). The PKG inhibitor KT5283 (KT; 1 mg/kg ip) or dl-propargylglycine (PAG; 50 mg/kg ip) the inhibitor of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) were given 10 and 30 min before cinaciguat. Cardiac function and infarct size were assessed by echocardiography and tetrazolium staining, respectively. Primary adult mouse cardiomyocytes were isolated and treated with cinaciguat before simulated ischemia/reoxygenation. Cinaciguat caused 63 and 41% reduction of infarct size when given before I/R and at reperfusion in rabbits, respectively. In mice, cinaciguat pretreatment caused a more robust 80% reduction in infarct size vs. 63% reduction when given at reperfusion and preserved cardiac function following I/R, which were blocked by KT and PAG. Cinaciguat also caused an increase in myocardial PKG activity and CSE expression. In cardiomyocytes, cinaciguat (50 nM) reduced necrosis and apoptosis and increased H(2)S levels, which was abrogated by KT. Cinaciguat is a novel molecule to induce H(2)S generation and a powerful protection against I/R injury in heart.


Journal of Pharmacology and Experimental Therapeutics | 2009

cGMP-Hydrolytic Activity and Its Inhibition by Sildenafil in Normal and Failing Human and Mouse Myocardium

Fabrice Vandeput; Judith Krall; Ramzi Ockaili; Fadi N. Salloum; Vincent A. Florio; Jackie D. Corbin; Sharron H. Francis; Rakesh C. Kukreja; Matthew A. Movsesian

In mouse models of cardiac disease, the type 5 (PDE5)-selective cyclic nucleotide phosphodiesterase inhibitor sildenafil has antihypertrophic and cardioprotective effects attributable to the inhibition of cGMP hydrolysis. To investigate the relevance of these findings to humans, we quantified cGMP-hydrolytic activity and its inhibition by sildenafil in cytosolic and microsomal preparations from the left ventricular myocardium of normal and failing human hearts. The vast majority of cGMP-hydrolytic activity was attributable to PDE1 and PDE3. Sildenafil had no measurable effect on cGMP hydrolysis at 10 nM, at which it is selective for PDE5, but it had a marked effect on cGMP and cAMP hydrolysis at 1 μM, at which it inhibits PDE1. In contrast, in preparations from the left ventricles of normal mice and mice with heart failure resulting from coronary artery ligation, the effects of sildenafil on cGMP hydrolysis were attributable to inhibition of both PDE5 and PDE1; PDE5 comprised ∼22 and ∼43% of the cytosolic cGMP-hydrolytic activity in preparations from normal and failing mouse hearts, respectively. These differences in PDE5 activities in human and mouse hearts call into question the extent to which the effects of sildenafil in mouse models are likely to be applicable in humans and raise the possibility of PDE1 as an alternative therapeutic target.


Pediatric Research | 2005

Sildenafil citrate (Viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits

Yvonne A Bremer; Fadi N. Salloum; Ramzi Ockaili; Eric Chou; William B. Moskowitz; Rakesh C. Kukreja

Infants undergoing surgery for congenital heart disease are at risk for myocardial ischemia during cardiopulmonary bypass, circulatory arrest, or low-flow states. The purpose of this study was to demonstrate the effects of sildenafil, a selective phosphodiesterase-5 (PDE-5) inhibitor on myocardial functional improvement and infarct size reduction during ischemia/reperfusion injury in infant rabbits. Infant rabbits (aged 8 wk) were treated with sildenafil citrate (0.7 mg/kg i.v.) or normal saline 30 min before sustained ischemia for 30 min and reperfusion for 3 h. Transesophageal echocardiography (TEE) was used to assess left ventricular cardiac output (LVCO) and aortic velocity time integral (VTI). After ischemia/reperfusion, risk area was demarcated by Evans blue dye and infarct size determined by computer morphometry of triphenyltetrazolium chloride–stained sections. The sildenafil-treated group had preservation and elevation in LVCO (143% of baseline, p < 0.05) and an elevated aortic VTI (145% of baseline, p < 0.05) after 30 min of ischemia compared with the control group LVCO (72% of baseline, p < 0.05) and aortic VTI (73% of baseline, p < 0.05). This is a statistically significant increase in LVCO and aortic VTI in the sildenafil group compared with controls (n = 6/group, p < 0.05). The sildenafil-treated group had significant reduction in infarct size (15.5 ± 1.2 versus 33 ± 2.3 in the saline group, % risk area, mean ± SEM, n = 10–15/group, p < 0.05). For the first time, we have shown that sildenafil citrate promotes myocardial protection in infant rabbits as evidenced by postischemic preservation and elevation in LVCO and aortic VTI and reduction in infarct size.


Circulation-cardiovascular Genetics | 2014

Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice

Stefano Toldo; Anindita Das; Eleonora Mezzaroma; Vinh Q Chau; Carlo Marchetti; David Durrant; Arun Samidurai; Benjamin W. Van Tassell; Chang Yin; Ramzi Ockaili; Navin Vigneshwar; Nitai D. Mukhopadhyay; Rakesh C. Kukreja; Antonio Abbate; Fadi N. Salloum

Background—Maintaining physiological levels of hydrogen sulfide during ischemia is necessary to limit injury to the heart. Because of the anti-inflammatory effects of hydrogen sulfide, we proposed that the hydrogen sulfide donor, sodium sulfide (Na2S), would attenuate myocardial injury through upregulation of protective microRNA-21 (miR-21) and suppression of the inflammasome, a macromolecular structure that amplifies inflammation and mediates further injury. Methods and Results—Na2S-induced miR-21 expression was measured by quantitative polymerase chain reaction in adult primary rat cardiomyocytes and in the mouse heart. We measured inflammasome formation and activity in cardiomyocytes challenged with lipopolysaccharide and ATP or simulated ischemia/reoxygenation and in the heart after regional myocardial ischemia/reperfusion, in the presence or absence of Na2S. To assess the direct anti-inflammatory effects of hydrogen sulfide in vivo, we used a peritonitis model by way of intraperitoneal injection of zymosan A. Na2S attenuated inflammasome formation and activity, measured by counting cytoplasmic aggregates of the scaffold protein apoptosis speck-like protein containing a caspase-recruitment domain (−57%) and caspase-1 activity (−50%) in isolated cardiomyocytes and in the mouse heart (all P<0.05). Na2S also inhibited apoptosis (−38%) and necrosis (−43%) in cardiomyocytes in vitro and reduced myocardial infarct size (−63%) after ischemia/reperfusion injury in vivo (all P<0.05). These protective effects were absent in cells treated with the miR-21 eraser, antagomiR-21, and in miR-21 knockout mice. Na2S also limited the severity of inflammasome-dependent inflammation in the model of peritonitis (P<0.05) in wild-type but not in miR-21 knockout mice. Conclusions—Na2S induces cardioprotective effects through miR-21–dependent attenuation of ischemic and inflammatory injury in cardiomyocytes.


Journal of Cardiovascular Pharmacology | 2010

Pharmacologic inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) promotes infarct resorption and prevents adverse cardiac remodeling after myocardial infarction in mice.

Ignacio M. Seropian; Antonio Abbate; Stefano Toldo; Jessica Harrington; Lisa Smithson; Ramzi Ockaili; Eleonora Mezzaroma; Federico Damilano; Emilio Hirsch; Benjamin W. Van Tassell

Background: Phosphoinositide 3-kinase gamma is upregulated in the heart during acute myocardial infarction (AMI) potentially contributing to the development and maintenance of heart failure. Methods: CD-1 male mice were randomly assigned to pharmacologic inhibition of phosphoinositide 3-kinase gamma using AS-605240 (10 mg/kg/day intraperitoneally) or vehicle (NaCl 0.9% + DMSO 25% solution) for 14 days after experimental AMI induced by surgical coronary artery ligation. Echocardiography was performed at baseline and 1, 7, 14, and 28 days after surgery to measure left ventricular dimensions and function. Infarct size was also measured at weekly intervals to evaluate for infarct resorption. Results: When compared with vehicle-treated mice over the 4-week period, animals treated with AS-605240 showed a smaller increase in left ventricular cavitary dimensions, a smaller decrease in left ventricular systolic function (P < 0.05), and a significant increase in posterior wall diastolic and systolic thickness reflective of compensatory hypertrophy (P < 0.05). Initial infarct size (measured at 24 hours) was not different comparing AS-605240 (29% ± 4%) and vehicle-treated mice (31% ± 1%, P = nonsignificant). At 4 weeks after AMI, infarct size was significantly smaller in the AS-605240-treated mice (14% ± 2%) compared with vehicle-treated mice (28% ± 3%, P < 0.001), reflecting greater infarct resorption. Conclusions: Phosphoinositide 3-kinase gamma inhibition with AS-605240 after AMI leads to enhanced infarct resorption, greater compensatory hypertrophy of the nonischemic myocardium, and more favorable cardiac remodeling and function.

Collaboration


Dive into the Ramzi Ockaili's collaboration.

Top Co-Authors

Avatar

Rakesh C. Kukreja

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fadi N. Salloum

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Anindita Das

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Antonio Abbate

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Vinh Q Chau

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Chang Yin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Lei Xi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Maiying Kong

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Qianhong Li

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Roberto Bolli

University of Louisville

View shared research outputs
Researchain Logo
Decentralizing Knowledge