Changnian Song
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Changnian Song.
BMC Genomics | 2010
Changnian Song; Chen Wang; Changqing Zhang; Nicholas Kibet Korir; Huaping Yu; Zhengqiang Ma; Jinggui Fang
BackgroundMicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.ResultsIn this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata.ConclusionDeep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.
Planta | 2009
Changnian Song; Jinggui Fang; Xiaoying Li; Hong-Hong Liu; C. Thomas Chao
MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus.
Physiologia Plantarum | 2011
Chen Wang; Xicheng Wang; Nicholas K. Kibet; Changnian Song; Changqing Zhang; Xiaoying Li; Jian Han; Jinggui Fang
MicroRNAs (miRNAs) are a class of non-coding RNA molecules which have significant gene regulation roles in organisms. The advent of new high-throughput sequencing technologies has enabled the discovery of novel miRNAs. Although there are two recent reports on high-throughput sequencing analysis of small RNA libraries from different organs of two wine grapevine varieties, there was a significant divergence in the number and kinds of miRNAs sequenced in these studies. More sequencing of small RNA libraries is still important for the discovery of novel miRNAs in grapevine. In this study, a total of 130 conserved grapevine Vitis vinifera miRNA (Vv-miRNA) belonging to 28 Vv-miRNA families were validated, other 80 unconserved Vv-miRNAs including 72 novel potential and 8 known but unconserved ones were found. Fifty-two (52.5%) of these 80 unconserved Vv-miRNAs exhibited differential poly(A)-tailed reverse transcriptase-polymerase chain reaction expression profiles in various grapevine tissues that could further confirm their existence in grapevine, among which 20 were expressed only in grapevine berries, indicating a degree of fruit-specificity. One hundred thirty target genes for 56 unconserved miRNAs could be predicted. The locations of these potential target genes on grapevine chromosomes and their complementary levels with the corresponding miRNAs were also analyzed. These results point to a regulatory role of miRNAs in grapevine berry development and response to various environments.
Physiologia Plantarum | 2011
Huaping Yu; Changnian Song; Qidong Jia; Chen Wang; Fei Li; Korir Kibet Nicholas; Xiaoying Zhang; Jinggui Fang
Thirty-one potential miRNAs that belong to 16 miRNA families were discovered from more than 324 000 EST sequences of apple (Malus domestica). In addition, precise sequences, especially terminal nucleotides of the 16 apple miRNAs (mdo-miRNAs) in 16 families were validated by miR-RACE, a newly developed method for the determination of the potential miRNAs predicted computationally. The expression of these 16 microRNAs could be detected in apple young leaf, old leaf, young stem, flower bud, flower and developing fruits by quantitative RT-PCR (qRT-PCR) and some of them showed tissue-specific expression. Fifty-six potential targets were identified for the 16 apple miRNAs, most of which were transcription factors that play important roles in apple development. Twelve target genes were experimentally verified by qRT-PCR, with some exhibiting different expression trends from their corresponding microRNAs, indicating the cleavage mode of miRNAs on their target genes.
Plant Biology | 2010
Changnian Song; Q. Jia; Jinggui Fang; Fei Li; Chen Wang; Z. Zhang
MicroRNAs (miRNAs) are a new family of small RNA molecules found in plants and animals. We developed a comprehensive strategy for identifying new miRNA homologues by mining the repository of available citrus expressed sequence tags (ESTs). By adopting a range of filtering criteria, we identified a total of 38 potential miRNAs--nine, five, nine and 15 miRNAs in Citrus trifoliata (ctr-miRNAs), C. clementina (ccl-miRNAs), C. reticulata (crt-miRNAs) and C. sinensis (csi-miRNAs), respectively--from more than 430,000 EST sequences in citrus. Using the potential miRNA sequences, we conducted a further BLAST search of the mRNA database and found six potential target genes in these citrus species. Eight miRNAs were selected in order to verify their existence in citrus using Northern blotting, and the functions of several miRNAs in miRNA-mediated gene regulation are experimentally suggested. It appears that all these miRNAs regulate expression of their target genes by cleavage, which is the most common situation in gene regulation mediated by plant miRNAs. Our achievement in identifying new miRNAs in citrus provides a powerful incentive for further studies on the important roles of these miRNAs.
PLOS ONE | 2011
Chen Wang; Lingfei Shangguan; Korir Nicholas Kibet; Xicheng Wang; Jian Han; Changnian Song; Jinggui Fang
Background Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1–3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. Methodology/Principal Findings Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. ‘Summer Black’. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of ‘Summer Black’. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. Conclusion The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics.
Molecular Biology Reports | 2012
Yanping Zhang; Mingliang Yu; Huaping Yu; Jian Han; Changnian Song; Ruijuan Ma; Jinggui Fang
Twenty-two potential miRNAs from seven miRNA families were first predicted from more than 80,857 EST sequences of peach (Prunus persica). Using two specific 5′ and 3′ miRNA RACE (miR-RACE) PCR reactions and sequence-directed cloning, we accurately determined the precise sequences, especially both ends, of eight candidate miRNAs. The sequencing results demonstrated that the ppe-miRNAs were conserved to those that were predicted computationally except ppe-miR171b. We validated the existence of two members (ppe-miR171a and miR171b) of the miR171 family in peach that belonged to different precursors. qRT-PCR was further employed in analyzing expression of the eight miRNAs in peach leaves, flowers, and fruits at different developing stages, where some of the miRNAs showed tissue-specific expression.
BMC Genomics | 2014
Jian Han; Jinggui Fang; Chen Wang; Yanlei Yin; Xin Sun; Xiangpeng Leng; Changnian Song
BackgroundMicroRNAs (miRNAs), involving in various biological and metabolic processes, have been discovered and analyzed in quite a number of plants species, such as Arabidopsis, rice and other plants. However, there have been few reports about grapevine miRNAs in response to gibberelline (GA3).ResultsSolexa technology was used to sequence small RNA libraries constructed from grapevine berries treated with GA3 and the control. A total of 122 known and 90 novel grapevine miRNAs (Vvi-miRNAs) were identified. Totally, 137 ones were found to be clearly responsive to GA3, among which 58 were down-regulated, 51 were up-regulated, 21 could only be detected in the control, and seven were only detected in the treatment. Subsequently, we found that 28 of them were differentially regulated by GA3, with 12 conserved and 16 novel Vvi-miRNAs, based on the analysis of qRT-PCR essays. There existed some consistency in expression levels of GA3-responsive Vvi-miRNAs between high throughput sequencing and qRT-PCR essays. In addition, 117 target genes for 29 novel miRNAs were predicted.ConclusionsDeep sequencing of short RNAs from grapevine berries treated with GA3 and the control identified 137 GA3-responsive miRNAs, among which 28 exhibited different expression profiles of response to GA3 in the diverse developmental stages of grapevine berries. These identified Vvi-miRNAs might be involved in the grapevine berry development and response to environmental stresses.
BMC Genetics | 2010
Xiaoying Li; Lingfei Shangguan; Changnian Song; Chen Wang; Zhihong Gao; Huaping Yu; Jinggui Fang
BackgroundExpressed Sequence Tag (EST) has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants.ResultsIn this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST) sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047), among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs) in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65%) and low in the peach (46%), and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species.ConclusionsWe have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species.
BMC Research Notes | 2012
Changnian Song; Mingliang Yu; Jian Han; Chen Wang; Hong Liu; Yanping Zhang; Jinggui Fang
BackgroundMicroRNAs play vital role in plant growth and development by changeable expression of their target genes with most plant microRNAs having perfect or near-perfect complementarities with their target genes but miRNAs in Citrus sinensis (csi-miRNAs) and their function have not been widely studied.FindingsIn this study, 15 potential microRNAs in Citrus sinensis (csi-miRNAs) were identified and bioinformatically validated using miR-RACE, a newly developed method for determination of miRNAs prediction computationally. The expression of these fifteen C. sinensis miRNAs can be detected in leaves, stems, flowers and fruits of C. sinensis by QRT-PCR with some of them showed tissue-specific expression. Six potential target genes were identified for six csi-miRNAs and also experimentally verified by Poly (A) polymerase -mediated 3′ rapid amplification of cDNA ends (PPM-RACE) and RNA ligase-mediated 5′ rapid amplification of cDNA ends (RLM-RACE) which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that indicate the regulatory function of the miRNAs on their target genes.ConclusionsOur results confirm that small RNA-mediated regulation whereby all csi-miRNAs regulate their target genes by degradation.