Emrul Kayesh
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emrul Kayesh.
BMC Genomics | 2012
Chen Wang; Jian Han; Chonghuai Liu; Korir Nicholas Kibet; Emrul Kayesh; Lingfei Shangguan; Xiaoying Li; Jinggui Fang
BackgroundMicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species.ResultsA small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism.ConclusionsDeep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Critical Reviews in Biotechnology | 2013
Nicholas Kibet Korir; Jian Han; Lingfei Shangguan; Chen Wang; Emrul Kayesh; Yanyi Zhang; Jinggui Fang
Plant variety and cultivar identification is one of the most important aspects in agricultural systems. The large number of varieties or landraces among crop plants has made it difficult to identify and characterize varieties solely on the basis of morphological characters because they are non stable and originate due to environmental and climatic conditions, and therefore phenotypic plasticity is an outcome of adaptation. To mitigate this, scientists have developed and employed molecular markers, statistical tests and software to identify and characterize the required plant cultivars or varieties for cultivation, breeding programs as well as for cultivar-right-protection. The establishment of genome and transcriptome sequencing projects for many crops has led to generation of a huge wealth of sequence information that could find much use in identification of plants and their varieties. We review the current status of plant variety and cultivar identification, where an attempt has been made to describe the different strategies available for plant identification. We have found that despite the availability of methods and suitable markers for a wide range of crops, there is dearth of simple ways of making both morphological descriptors and molecular markers easy, referable and practical to use although there are ongoing attempts at making this possible. Certain limitations present a number of challenges for the development and utilization of modern scientific methods in variety or cultivar identification in many important crops.
Molecular Biology Reports | 2012
Xin Sun; Nicholas Kibet Korir; Jian Han; Lingfei Shangguan; Emrul Kayesh; Xiangpeng Leng; Jinggui Fang
MicroRNAs (miRNAs) are an extensive class of newly identified small RNAs that regulate gene expression at post-transcription level by mRNA cleavage or translation. In our study, we used qRT-PCR and found that Vv-miR164 is expression in grapevine leaves, stems, tendrils, inflorescences, flowers and fruits. In addition, two potential target genes for Vv-miR164 were also found and verified by PPM-RACE and RLM-RACE. The results not only maps the cleavage site of the target mRNA but allowed for detection the expression pattern of cleaved fragments that can indicate the regulatory function of this miRNA on its target genes. These target genes were explored by qRT-PCR where some exhibited different expression patterns from their corresponding miRNA, indicating the cleavage mode of the miRNA on its target genes. The efficient and powerful approach used in this study can help in further understanding of how miRNAs cleaved their target mRNAs. Results from this study prove the importance of Vv-miR164 in regulating development and growth of grapes, and adds to the existing knowledge of small RNA-mediated regulation in grapes.
PLOS ONE | 2013
Lingfei Shangguan; Jian Han; Emrul Kayesh; Xin Sun; Changqing Zhang; Tariq Pervaiz; Xicheng Wen; Jinggui Fang
Background With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated. Methodology/Principal Finding Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ∼ 98.28% and 89.02% ∼ 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly. Conclusion The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published.
Molecular Biology Reports | 2013
Nicholas Kibet Korir; Xiaoying Li; Sun Xin; Chen Wang; Song Changnian; Emrul Kayesh; Jinggui Fang
Presence of selected tomato (Solanum lycopersicon) microRNAs (sly-miRNAs) was validated and their expression profiles established in roots, stems, leaves, flowers and fruits of tomato variety Jiangshu14 by quantitative RT-PCR (qRT-PCR). In addition conservation characteristics these sly-miRNAs were analyzed and target genes predicted bioinformatically. Results indicate that some of these miRNAs are specific to tomato while most are conserved in other plant species. Predicted sly-miRNA targets genes were shown to be targeted by either by a single or more miRNAs and are involved in diverse processes in tomato plant growth and development. All the 36 miRNAs were present in the cDNA of mixed tissues and qRT-PCR revealed that some of these sly-miRNAs are ubiquitous in tomato while others have tissue-specific expression. The experimental validation and expression profiling as well target gene prediction of these miRNAs in tomato as done in this study can add to the knowledge on the important roles played by these sly-miRNAs in the growth and development, environmental stress tolerance as well as pest and disease resistance in tomatoes and related species. In addition these findings broaden the knowledge of small RNA-mediated regulation in S. lycopersicon. It is recommended that experimental validation of the target genes be done so as to give a much more comprehensive information package on these miRNAs in tomato and specifically in the selected variety.
Molecular Biology Reports | 2013
Lingfei Shangguan; Emrul Kayesh; Xiangpeng Leng; Xin Sun; Nicholas Kibet Korir; Qian Mu; Jinggui Fang
In plant and animal species FK506-binding protein (FKBP) family genes are important conserved genes and it is defined as the receptors of FK506 and rapamycin, where they work as PPIase and protein folding chaperones. FKBP have been isolated from Arabidopsis thaliana, Oryza sativa, and Zea mays. In grape, twenty-three genes containing the FK506-binding domain (FKBP_C) were first time identified by HMMER and blast research, they were classified into three groups and 17 out of the 23 genes were located on 11 chromosomes (Chr1, 3, 5, 7, 8, 14, 15, 16, 17, 18, and 19). The predicted gene expression pattern and semi-quantitative RT-PCR results revealed that five VvFKBPs were expressed in all tissues, while seven VvFKBPs were expressed only in some of the tissues, and the remaining VvFKBPs were not expressed in leaf, stem, inflorescences, flowers, and a mixture of fruit tissues (small, medium and big-sized fruits). Most of the VvFKBPs in grapevine ‘Summer Black’ were similar to those predicted one in ‘Pinot Noir’ except for VvFKBP16-4 and VvFKBPa. VvFKBP12, FaFKBP12 and PpFKBP12 were cloned from ‘Summer Black’, ‘Sweet Charlie’ and ‘Xiahui 6’. Protein structure analysis confirmed that homologous genes have some differences during the process of protein structure construction. In this study, we characterized and verified 23 FKBP family genes in grapevine (Vitis vinifera L.) as well as their sub-cellular and chromosome location. The successful cloning of CDS regions and protein structural analysis of VvFKBP12, FaFKBP12, and PpFKBP12 can provide useful information for further study.
Genetics and Molecular Research | 2014
Nicholas Kibet Korir; W. Diao; Ran Tao; Xiaoying Li; Emrul Kayesh; A. Li; W. Zhen; S. Wang
The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties.
Plant Molecular Biology Reporter | 2014
Chen Wang; Jian Han; Lingfei Shangguan; Guang Yang; Emrul Kayesh; Yanyi Zhang; Xiangpeng Leng; Jinggui Fang
The development of precision agriculture calls for the emergence of new approaches to more accurately depict plant phenology. Gene expression data can predict and indicate plant growth state and phenological events accurately at the molecular level, and thus could be developed as a novel means of describing crop phenophase. Here, we analyzed the expression profiles of nine genes involved in grapevine flower and berry development, and screened the most informative genes for use in depicting grapevine phenology. Of the genes tested, VvAP1, VvAP3, VvFLC were found to be best suited to depicting grapevine phenology. The feasibility and efficiency of using the genetically depicted grapevine phenology was further tested in fertilization trials. The results showed that fertilization could be used to decrease flower and berry drop ratio and increase berry weight and size to a greater extent when taking into account variations in the activity of specific genes. Thus, phenologies predicted by a knowledge of gene activity can definitely be formed, and can be regarded as “genetic phenology”. A first grapevine genetic phenology profile was completed, and used to pre-depict grapevine phenophases to accurately guide the timing of grapevine farming activities and in the pre-diagnosis of the influence of some stresses on grapevines. Genetic phenology could be developed into a simple, low-cost and highly effective technology for accurate prediction of traditional crop phenology at the molecular level that is well suited to precision agriculture.
Molecular Biology Reports | 2014
Xicheng Wang; Emrul Kayesh; Jian Han; Chonghuai Liu; Chen Wang; Changnian Song; Anjing Ge; Jinggui Fang
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Journal of Horticultural Science & Biotechnology | 2012
Lingfei Shangguan; Chen Wang; Emrul Kayesh; Yanyi Zhang; Nicholas Kibet Korir; Jian Han; Jinggui Fang
Summary Grapevine (Vitis vinifera L.) is a perennial liana that possesses characteristics of both herbaceous and woody plants. With the development of molecular biology, an increasing number of tools have been invented and exploited in order to cope with the growing repertoire of grapevine genes. These tools provide evidence in studies on the evolutionary relationships of grapevine genes. In this study, 20 grapevine genes and 80 homologous genes were used for a multitype structural analysis using bioinformatics software. These analyses included sequence alignments and the construction of phylogenetic trees, predictions of subcellular localisation, protein primary structure analysis, secondary structure prediction, and tertiary protein structure model construction. From an analysis of all these data, only ten genes (50%) showed clear clustering, with only six genes keeping their clustering during translation into proteins. According to these results, most protein sequences from grapevine genes did not have characteristics that distinguished them from genes in other woody plants. This study revealed that grapevine genes have co-evolved with genes in herbaceous and woody plants, and not as separate events. This agrees with the taxonomy of grapevine, a perennial liana plant which displays characteristics of both herbaceous and woody plants.