Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinggui Fang is active.

Publication


Featured researches published by Jinggui Fang.


BMC Genomics | 2010

Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata)

Changnian Song; Chen Wang; Changqing Zhang; Nicholas Kibet Korir; Huaping Yu; Zhengqiang Ma; Jinggui Fang

BackgroundMicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.ResultsIn this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata.ConclusionDeep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.


Planta | 2009

Identification and characterization of 27 conserved microRNAs in citrus

Changnian Song; Jinggui Fang; Xiaoying Li; Hong-Hong Liu; C. Thomas Chao

MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus.


BMC Genomics | 2012

Identification of microRNAs from Amur grape (vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics

Chen Wang; Jian Han; Chonghuai Liu; Korir Nicholas Kibet; Emrul Kayesh; Lingfei Shangguan; Xiaoying Li; Jinggui Fang

BackgroundMicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species.ResultsA small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism.ConclusionsDeep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.


Physiologia Plantarum | 2011

Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase

Chen Wang; Xicheng Wang; Nicholas K. Kibet; Changnian Song; Changqing Zhang; Xiaoying Li; Jian Han; Jinggui Fang

MicroRNAs (miRNAs) are a class of non-coding RNA molecules which have significant gene regulation roles in organisms. The advent of new high-throughput sequencing technologies has enabled the discovery of novel miRNAs. Although there are two recent reports on high-throughput sequencing analysis of small RNA libraries from different organs of two wine grapevine varieties, there was a significant divergence in the number and kinds of miRNAs sequenced in these studies. More sequencing of small RNA libraries is still important for the discovery of novel miRNAs in grapevine. In this study, a total of 130 conserved grapevine Vitis vinifera miRNA (Vv-miRNA) belonging to 28 Vv-miRNA families were validated, other 80 unconserved Vv-miRNAs including 72 novel potential and 8 known but unconserved ones were found. Fifty-two (52.5%) of these 80 unconserved Vv-miRNAs exhibited differential poly(A)-tailed reverse transcriptase-polymerase chain reaction expression profiles in various grapevine tissues that could further confirm their existence in grapevine, among which 20 were expressed only in grapevine berries, indicating a degree of fruit-specificity. One hundred thirty target genes for 56 unconserved miRNAs could be predicted. The locations of these potential target genes on grapevine chromosomes and their complementary levels with the corresponding miRNAs were also analyzed. These results point to a regulatory role of miRNAs in grapevine berry development and response to various environments.


Physiologia Plantarum | 2011

Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE

Huaping Yu; Changnian Song; Qidong Jia; Chen Wang; Fei Li; Korir Kibet Nicholas; Xiaoying Zhang; Jinggui Fang

Thirty-one potential miRNAs that belong to 16 miRNA families were discovered from more than 324 000 EST sequences of apple (Malus domestica). In addition, precise sequences, especially terminal nucleotides of the 16 apple miRNAs (mdo-miRNAs) in 16 families were validated by miR-RACE, a newly developed method for the determination of the potential miRNAs predicted computationally. The expression of these 16 microRNAs could be detected in apple young leaf, old leaf, young stem, flower bud, flower and developing fruits by quantitative RT-PCR (qRT-PCR) and some of them showed tissue-specific expression. Fifty-six potential targets were identified for the 16 apple miRNAs, most of which were transcription factors that play important roles in apple development. Twelve target genes were experimentally verified by qRT-PCR, with some exhibiting different expression trends from their corresponding microRNAs, indicating the cleavage mode of miRNAs on their target genes.


Plant Biology | 2010

Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags.

Changnian Song; Q. Jia; Jinggui Fang; Fei Li; Chen Wang; Z. Zhang

MicroRNAs (miRNAs) are a new family of small RNA molecules found in plants and animals. We developed a comprehensive strategy for identifying new miRNA homologues by mining the repository of available citrus expressed sequence tags (ESTs). By adopting a range of filtering criteria, we identified a total of 38 potential miRNAs--nine, five, nine and 15 miRNAs in Citrus trifoliata (ctr-miRNAs), C. clementina (ccl-miRNAs), C. reticulata (crt-miRNAs) and C. sinensis (csi-miRNAs), respectively--from more than 430,000 EST sequences in citrus. Using the potential miRNA sequences, we conducted a further BLAST search of the mRNA database and found six potential target genes in these citrus species. Eight miRNAs were selected in order to verify their existence in citrus using Northern blotting, and the functions of several miRNAs in miRNA-mediated gene regulation are experimentally suggested. It appears that all these miRNAs regulate expression of their target genes by cleavage, which is the most common situation in gene regulation mediated by plant miRNAs. Our achievement in identifying new miRNAs in citrus provides a powerful incentive for further studies on the important roles of these miRNAs.


Bioinformatics | 2012

Identification of trans-acting siRNAs and their regulatory cascades in grapevine

Changqing Zhang; Guangping Li; Jin Wang; Jinggui Fang

MOTIVATION Trans-acting small interfering RNAs (ta-siRNAs) play an essential role in the regulation of plant gene expression, but relevant reports are still limited. Bioinformatic analyses indicate that many ta-siRNA-producing loci (TASs) are present in plants, implying the existence of as yet undiscovered ta-siRNAs and related regulatory pathways. To expand our knowledge of these plant gene regulators, we applied high-throughput computational and experimental methods to grapevine (Vitis vinifera L.). RESULTS Based on bioinformatic predictions, we identified 49 TASs from 49 055 small RNA clusters. Using RNA degradome analysis, we experimentally validated 5 TASs, 22 ta-siRNAs and 37 ta-siRNA targets. The cis-activities of ta-siRNAs were also confirmed, which suggested an inactive mechanism of TAS transcription, and a produced mechanism of multiple forms of small RNA from same TAS. We examined the conservation of newly identified ta-siRNA regulatory cascades and found that while the cascade related to vviTAS3 was conserved, cascades related to vviTAS7, vviTAS8, vviTAS9 and vviTAS10 were grape-specific. These results broaden the known scope of ta-siRNA regulation.


PLOS ONE | 2011

Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE

Chen Wang; Lingfei Shangguan; Korir Nicholas Kibet; Xicheng Wang; Jian Han; Changnian Song; Jinggui Fang

Background Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1–3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. Methodology/Principal Findings Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. ‘Summer Black’. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of ‘Summer Black’. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. Conclusion The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics.


Critical Reviews in Biotechnology | 2013

Plant variety and cultivar identification: advances and prospects

Nicholas Kibet Korir; Jian Han; Lingfei Shangguan; Chen Wang; Emrul Kayesh; Yanyi Zhang; Jinggui Fang

Plant variety and cultivar identification is one of the most important aspects in agricultural systems. The large number of varieties or landraces among crop plants has made it difficult to identify and characterize varieties solely on the basis of morphological characters because they are non stable and originate due to environmental and climatic conditions, and therefore phenotypic plasticity is an outcome of adaptation. To mitigate this, scientists have developed and employed molecular markers, statistical tests and software to identify and characterize the required plant cultivars or varieties for cultivation, breeding programs as well as for cultivar-right-protection. The establishment of genome and transcriptome sequencing projects for many crops has led to generation of a huge wealth of sequence information that could find much use in identification of plants and their varieties. We review the current status of plant variety and cultivar identification, where an attempt has been made to describe the different strategies available for plant identification. We have found that despite the availability of methods and suitable markers for a wide range of crops, there is dearth of simple ways of making both morphological descriptors and molecular markers easy, referable and practical to use although there are ongoing attempts at making this possible. Certain limitations present a number of challenges for the development and utilization of modern scientific methods in variety or cultivar identification in many important crops.


Molecular Biology Reports | 2012

Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE

Yanping Zhang; Mingliang Yu; Huaping Yu; Jian Han; Changnian Song; Ruijuan Ma; Jinggui Fang

Twenty-two potential miRNAs from seven miRNA families were first predicted from more than 80,857 EST sequences of peach (Prunus persica). Using two specific 5′ and 3′ miRNA RACE (miR-RACE) PCR reactions and sequence-directed cloning, we accurately determined the precise sequences, especially both ends, of eight candidate miRNAs. The sequencing results demonstrated that the ppe-miRNAs were conserved to those that were predicted computationally except ppe-miR171b. We validated the existence of two members (ppe-miR171a and miR171b) of the miR171 family in peach that belonged to different precursors. qRT-PCR was further employed in analyzing expression of the eight miRNAs in peach leaves, flowers, and fruits at different developing stages, where some of the miRNAs showed tissue-specific expression.

Collaboration


Dive into the Jinggui Fang's collaboration.

Top Co-Authors

Avatar

Chen Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lingfei Shangguan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Han

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Changnian Song

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiangpeng Leng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin Sun

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Emrul Kayesh

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xudong Zhu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Nicholas Kibet Korir

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoying Li

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge