Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changshan Wang is active.

Publication


Featured researches published by Changshan Wang.


Nature Communications | 2014

Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation

Goro Sashida; Hironori Harada; Hirotaka Matsui; Motohiko Oshima; Makiko Yui; Yuka Harada; Satomi Tanaka; Makiko Mochizuki-Kashio; Changshan Wang; Atsunori Saraya; Tomoya Muto; Yoshihiro Hayashi; Kotaro Suzuki; Hiroshi Nakajima; Toshiya Inaba; Haruhiko Koseki; Gang Huang; Toshio Kitamura; Atsushi Iwama

Loss-of-function mutations of EZH2, a catalytic component of polycomb repressive complex 2 (PRC2), are observed in ~\n10% of patients with myelodysplastic syndrome (MDS), but are rare in acute myeloid leukaemia (AML). Recent studies have shown that EZH2 mutations are often associated with RUNX1 mutations in MDS patients, although its pathological function remains to be addressed. Here we establish an MDS mouse model by transducing a RUNX1S291fs mutant into hematopoietic stem cells and subsequently deleting Ezh2. Ezh2 loss significantly promotes RUNX1S291fs-induced MDS. Despite their compromised proliferative capacity of RUNX1S291fs/Ezh2-null MDS cells, MDS bone marrow impairs normal hematopoietic cells via selectively activating inflammatory cytokine responses, thereby allowing propagation of MDS clones. In contrast, loss of Ezh2 prevents the transformation of AML via PRC1-mediated repression of Hoxa9. These findings provide a comprehensive picture of how Ezh2 loss collaborates with RUNX1 mutants in the pathogenesis of MDS in both cell autonomous and non-autonomous manners.


Blood | 2015

Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner

Makiko Mochizuki-Kashio; Kazumasa Aoyama; Goro Sashida; Motohiko Oshima; Takahisa Tomioka; Tomoya Muto; Changshan Wang; Atsushi Iwama

Recent genome sequencing revealed inactivating mutations in EZH2, which encodes an enzymatic component of polycomb-repressive complex 2 (PRC2), in patients with myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs), and MDS/MPN overlap disorders. We herein demonstrated that the hematopoietic-specific deletion of Ezh2 in mice induced heterogeneous hematopoietic malignancies. Myelodysplasia was detected in mice following the deletion of Ezh2, and resulted in the development of MDS and MDS/MPN. Thrombocytosis was induced by Ezh2 loss and sustained in some mice with myelodysplasia. Although less frequent, Ezh2 loss also induced T-cell acute lymphoblastic leukemia and the clonal expansion of B-1a B cells. Gene expression profiling showed that PRC2 target genes were derepressed upon the deletion of Ezh2 in hematopoietic stem and progenitor cells, but were largely repressed during the development of MDS and MDS/MPN. Chromatin immunoprecipitation-sequence analysis of trimethylation of histone H3 at lysine 27 (H3K27me3) revealed a compensatory function of Ezh1, another enzymatic component of PRC2, in this process. The deletion of Ezh1 alone did not cause dysplasia or any hematologic malignancies in mice, but abolished the repopulating capacity of hematopoietic stem cells when combined with Ezh2 loss. These results clearly demonstrated an essential role of Ezh1 in the pathogenesis of hematopoietic malignancies induced by Ezh2 insufficiency, and highlighted the differential functions of Ezh1 and Ezh2 in hematopoiesis.


PLOS ONE | 2011

Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase.

Taito Nishino; Changshan Wang; Makiko Mochizuki-Kashio; Mitsujiro Osawa; Hiromitsu Nakauchi; Atsushi Iwama

Background Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However, methods suitable for clinical practice have yet to be fully established. Methodology/Principal Findings In this study, we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo, and identified Garcinol, a plant-derived histone acetyltransferase (HAT) inhibitor, as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34+CD38– HSCs supplemented with stem cell factor and thrombopoietin, Garcinol increased numbers of CD34+CD38– HSCs/PCs more than 4.5-fold and Isogarcinol, a derivative of Garcinol, 7.4-fold. Furthermore, during a 7-day culture of CD34+ HSCs/PCs, Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones, while inactive derivatives did not. Conclusions/Significance Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.


PLOS ONE | 2014

Downregulation of rRNA Transcription Triggers Cell Differentiation

Yuki Hayashi; Takao Kuroda; Hiroyuki Kishimoto; Changshan Wang; Atsushi Iwama; Keiji Kimura

Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA) in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.


Blood | 2014

Depletion of Sf3b1 impairs proliferative capacity of hematopoietic stem cells but is not sufficient to induce myelodysplasia

Changshan Wang; Goro Sashida; Atsunori Saraya; Reiko Ishiga; Shuhei Koide; Motohiko Oshima; Kyoichi Isono; Haruhiko Koseki; Atsushi Iwama

Numerous studies have recently reported mutations involving multiple components of the messenger RNA (mRNA) splicing machinery in patients with myelodysplastic syndrome (MDS). SF3B1 is mutated in 70% to 85% of refractory anemia with ringed sideroblasts (RARS) patients and is highly associated with the presence of RARS, although the pathological role of SF3B1 mutations in MDS-RARS has not been elucidated yet. Here, we analyzed the function of pre-mRNA splicing factor Sf3b1 in hematopoiesis. Sf3b1(+/-) mice maintained almost normal hematopoiesis and did not develop hematological malignancies during a long observation period. However, Sf3b1(+/-) cells had a significantly impaired capacity to reconstitute hematopoiesis in a competitive setting and exhibited some enhancement of apoptosis, but they did not show any obvious defects in differentiation. Additional depletion of Sf3b1 with shRNA in Sf3b1(+/-) hematopoietic stem cells (HSCs) severely compromised their proliferative capacity both in vitro and in vivo. Finally, we unexpectedly found no changes in the frequencies of sideroblasts in either Sf3b1(+/-) erythroblasts or cultured Sf3b1(+/-) erythroblasts expressing shRNA against Sf3b1. Our findings indicate that the level of Sf3b1 expression is critical for the proliferative capacity of HSCs, but the haploinsufficiency for Sf3b1 is not sufficient to induce a RARS-like phenotype.


Journal of Experimental Medicine | 2016

The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition

Goro Sashida; Changshan Wang; Takahisa Tomioka; Motohiko Oshima; Kazumasa Aoyama; Akinori Kanai; Makiko Mochizuki-Kashio; Hironori Harada; Kazuya Shimoda; Atsushi Iwama

Loss of Ezh2 in the presence of activating mutation in JAK2 (JAK2V617F) cooperatively alters transcriptional programs of hematopoiesis, activates specific oncogenes, and promotes the development of myelofibrosis.


British Journal of Haematology | 2011

Direct activation of STAT5 by ETV6-LYN fusion protein promotes induction of myeloproliferative neoplasm with myelofibrosis

Yusuke Takeda; Chiaki Nakaseko; Hiroaki Tanaka; Masahiro Takeuchi; Makiko Yui; Atsunori Saraya; Satoru Miyagi; Changshan Wang; Satomi Tanaka; Chikako Ohwada; Emiko Sakaida; Naoto Yamaguchi; Koutaro Yokote; Lothar Hennighausen; Atsushi Iwama

Myeloproliferative neoplasms (MPN), a group of haematopoietic stem cell (HSC) disorders, are often accompanied by myelofibrosis. We previously identified the fusion of the ETV6 gene to the LYN gene (ETV6‐LYN) in idiopathic myelofibrosis with ins(12;8)(p13;q11q21). The introduction of ETV6‐LYN into HSCs resulted in fatal MPN with massive myelofibrosis in mice, implicating the rearranged LYN kinase in the pathogenesis of MPN with myelofibrosis. However, the signalling molecules directly downstream from and activated by ETV6‐LYN remain unknown. In this study, we demonstrated that the direct activation of STAT5 by ETV6‐LYN is crucial for the development of MPN. ETV6‐LYN was constitutively active as a kinase through autophosphorylation. ETV6‐LYN, but not its kinase‐dead mutant, supported cytokine‐free proliferation of haematopoietic cells. STAT5 was activated in a JAK2‐independent manner in ETV6‐LYN‐expressing cells. ETV6‐LYN interacted with STAT5 and directly activated STAT5 both in vitro and in vivo. Of note, ETV6‐LYN did not support the formation of colonies by Stat5‐deficient HSCs under cytokine‐free conditions and the capacity of ETV6‐LYN to induce MPN with myelofibrosis was profoundly attenuated in a Stat5‐null background. These findings define STAT5 as a direct target of ETV6‐LYN and unveil the LYN‐STAT5 axis as a novel pathway to augment proliferative signals in MPN and leukaemia.


Nature Genetics | 2017

Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia

Masafumi Seki; Shunsuke Kimura; Tomoya Isobe; Kenichi Yoshida; Hiroo Ueno; Yaeko Nakajima-Takagi; Changshan Wang; Lin Lin; Ayana Kon; Hiromichi Suzuki; Yusuke Shiozawa; Keisuke Kataoka; Yoichi Fujii; Yuichi Shiraishi; Kenichi Chiba; Hiroko Tanaka; Teppei Shimamura; Kyoko Masuda; Hiroshi Kawamoto; Kentaro Ohki; Motohiro Kato; Yuki Arakawa; Katsuyoshi Koh; Ryoji Hanada; Hiroshi Moritake; Masaharu Akiyama; Ryoji Kobayashi; Takao Deguchi; Yoshiko Hashii; Toshihiko Imamura

The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4−CD8−) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-β-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.


Nature Communications | 2014

Histone acetylation mediated by Brd1 is crucial for Cd8 gene activation during early thymocyte development

Yuta Mishima; Changshan Wang; Satoru Miyagi; Atsunori Saraya; Hiroyuki Hosokawa; Makiko Mochizuki-Kashio; Yaeko Nakajima-Takagi; Shuhei Koide; Masamitsu Negishi; Goro Sashida; Taku Naito; Tomoyuki Ishikura; Atsushi Onodera; Toshinori Nakayama; Daniel G. Tenen; Naoto Yamaguchi; Haruhiko Koseki; Ichiro Taniuchi; Atsushi Iwama

During T-cell development, Cd8 expression is controlled via dynamic regulation of its cis-regulatory enhancer elements. Insufficiency of enhancer activity causes variegated Cd8 expression in CD4(+)CD8(+) double-positive (DP) thymocytes. Brd1 is a subunit of the Hbo1 histone acetyltransferase (HAT) complex responsible for acetylation of histone H3 at lysine 14 (H3K14). Here we show that deletion of Brd1 in haematopoietic progenitors causes variegated expression of Cd8, resulting in the appearance of CD4(+)CD8(-)TCRβ(-/low) thymocytes indistinguishable from DP thymocytes in their properties. Biochemical analysis confirms that Brd1 forms a HAT complex with Hbo1 in thymocytes. ChIP analysis demonstrates that Brd1 localizes at the known enhancers in the Cd8 genes and is responsible for acetylation at H3K14. These findings indicate that the Brd1-mediated HAT activity is crucial for efficient activation of Cd8 expression via acetylation at H3K14, which serves as an epigenetic mark that promotes the recruitment of transcription machinery to the Cd8 enhancers.


Experimental Hematology | 2016

Ezh2 regulates the Lin28/let-7 pathway to restrict activation of fetal gene signature in adult hematopoietic stem cells.

Motohiko Oshima; Nagisa Hasegawa; Makiko Mochizuki-Kashio; Tomoya Muto; Satoru Miyagi; Shuhei Koide; Shogo Yabata; George R. Wendt; Atsunori Saraya; Changshan Wang; Kazuya Shimoda; Yutaka Suzuki; Atsushi Iwama

Fetal liver hematopoietic stem cells (HSCs) seed bone marrow (BM) and undergo reprograming into adult-type HSCs that are largely quiescent and restricted in their self-renewal activity. Here we report that in the absence of the polycomb-group gene Ezh2, a cohort of fetal-specific genes, including let-7 target genes, were activated in BM hematopoietic stem/progenitor cells (HSPCs), leading to acquisition of fetal phenotypes by BM HSPCs, such as enhanced self-renewal activity and production of fetal-type lymphocytes. The Lin28b/let-7 pathway determines developmentally timed changes in HSPC programs. Of note, many of the fetal-specific let-7 target genes, including Lin28, appear to be transcriptionally repressed by Ezh2-mediated H3K27me3 in BM HSPCs, and Ezh2 loss results in their ectopic expression, particularly in hematologic malignancies that develop in the absence of Ezh2. These findings suggest that Ezh2 cooperates with let-7 microRNAs in silencing the fetal gene signature in BM HSPCs and restricts their transformation.

Collaboration


Dive into the Changshan Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge