Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Changwei Zhao is active.

Publication


Featured researches published by Changwei Zhao.


Journal of Hazardous Materials | 2009

Experimental study of arsenic removal by direct contact membrane distillation

Dan Qu; Jun Wang; Deyin Hou; Zhaokun Luan; Bin Fan; Changwei Zhao

Arsenite (As(III)) and arsenate (As(V)) removal by direct contact membrane distillation (DCMD) were investigated with self-made polyvinylidene fluoride (PVDF) membranes in the present work. Permeability and ion rejection efficiency of the membrane were tested before the arsenic removal experiments. A maximum permeate flux 20.90 kg/m(2)h was obtained, and due to the hydrophobic property, the PVDF membrane had high rejection of inorganic anions and cations which was independent of the solution pH and the temperature. The experimental results indicated that DCMD process had higher removal efficiency of arsenic than pressure-driven membrane processes, especially for high-concentration arsenic and arsenite removal. The experimental results indicated that the permeate As(III) and As(V) were under the maximum contaminant limit (10 microg/L) until the feed As(III) and As(V) achieved 40 and 2000 mg/L, respectively. The 250 h simultaneous DCMD performance of 0.5mg/L As(III) and As(V) solution was carried out, respectively. The permeate arsenic was not detected during the process which showed the PVDF membrane had stable arsenic removal efficiency. Membrane morphology changed slightly after the experiments, however, the permeability and the ion rejection of the membrane did not change.


Journal of Hazardous Materials | 2010

Boron removal from aqueous solution by direct contact membrane distillation

Deyin Hou; Jun Wang; Xiangcheng Sun; Zhaokun Luan; Changwei Zhao; Xiaojing Ren

The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.


Journal of Environmental Sciences-china | 2010

Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal

Xiaojing Ren; Changwei Zhao; Songshan Du; Tao Wang; Zhaokun Luan; Jun Wang; Deyin Hou

The feasibility of employing nanofiltration for the removal of chromium (VI) from wastewater was investigated. Poly (m-phenylene isophthalamide) (PMIA) was used to fabricate asymmetric nanofiltration membrane through the phase-inversion technique. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the obtained membrane, and the both confirmed a much smoother surface which could reduce membrane fouling. The PMIA membrane showed different rejections to electrolytes in a sequence of Na2SO4 > MgSO4 > NaCl > MgCl2, which was similar to the sequence of the negatively charged nanofiltration membranes. Separation experiments on chromium(VI) solution were conducted at various operating conditions, such as feed concentration, applied pressure and pH. It is concluded that chromium(VI) could be effectively removed from chromium-containing wastewater by the PMIA nanofiltration membranes while maintaining their pollution resistance under alkaline condition.


Journal of Environmental Sciences-china | 2013

Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures

Yang Yu; Changwei Zhao; Yangui Wang; Weihong Fan; Zhaokun Luan

The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure (TMP), and the presence of natural organic matter (humic acid, HA) on the arsenic removal efficiency and permeate flux were investigated. The arsenic rejection of ESNA-1-LF was higher than those of the other membranes in all experiments (> 94%), and the HODRA-CORE membrane gave the lowest removal of arsenic (< 47%). An increase in the ion concentration in the feed solution and addition of HA decreased the arsenic rejection of the HODRA-CORE membrane. However, both increasing of the ion concentration and addition of HA made the rejection increased for the other membranes (ESNA-1-K1, NF270, and ESNA-1-LF). With increasing TMP, for all four NF membranes, increases in both arsenic rejection and permeate flux were observed. The permeate fluxes of the four NF membranes decreased to some extent after addition of HA to the solutions for operating time of 6 hr.


Journal of Hazardous Materials | 2010

Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation.

Jun Wang; Xianjia Peng; Zhaokun Luan; Changwei Zhao

Carbon nanotubes (CNTs) exhausted with dye reactive red 3BS were regenerated by microwave irradiation under N(2) atmosphere. High regeneration efficiency was achieved and the regeneration efficiency reached 92.8% after four cycles regeneration. The decrease in adsorption capacity was suggested to be due to the deposition of decomposition residues in CNT pores, which blocked the carbon porosity and decreased the specific surface area.


Chinese Journal of Chemical Engineering | 2009

Separation of Sulfur/Gasoline Mixture with Polydimethylsiloxane/Polyetherimide Composite Membranes by Pervaporation

Changwei Zhao; Jiding Li; Jian Chen; Rongbin Qi; Zhaokun Luan

Abstract Worldwide environment has resulted in a limit on the sulfur content of gasoline. It is urgent to investigate the desulfurization of gasoline. The polydimethylsiloxane (PDMS)/polyetherimide (PEI) composite membranes were prepared by casting a PDMS solution onto porous PEI substrates and characterized by scanning electron microscope (SEM). The membranes were used for sulfur removal from gasoline by pervaporation. The effects of feed temperature, sulfur content in the feed and PDMS layer thickness on membrane performance were investigated, and an activation energy of permeation was obtained. Experimental results indicated that higher feed temperature yielded higher total flux and lower sulfur enrichment factor. The total flux varied little with the increase of sulfur content in the feed, but the sulfur enrichment factor first increased with the amount of thiophene added into the gasoline, and then the variation was little. The increase of PDMS layer thickness resulted in a smaller flux but a larger sulfur enrichment factor. The result indicates that the PDMS/PEI composite membranes are promising for desulfurization by pervaporation.


RSC Advances | 2016

Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification

Jin Wang; Changwei Zhao; Tao Wang; Zhen Wu; Xiang Li; Jiding Li

In this study, a facile polypiperazine-amide (PPA) composite nanofiltration (NF) membrane with nanomaterial graphene oxide (GO) incorporated into a polyamide (PA) layer for high water flux and anti-fouling was fabricated by interfacial polymerization (IP). The chemical composition, structure and surface properties of the fabricated PPA/GO and PPA composite NF membranes were characterized by FTIR, XPS, FE-SEM, AFM, zeta-potential and contact angle measurements. The separation properties and anti-fouling ability of the PPA/GO NF membrane were investigated and discussed. The experimental results indicated that the water flux of the PPA/GO (300 mg L−1 GO) membrane increased from 66 (L m−2 h−1) to 87.6 (L m−2 h−1) under the operating pressure of 0.6 MPa, almost 1.4 times that of the PPA (without GO) membrane. However, the high salt rejection was still retained in the order of Na2SO4 (98.2%) > MgSO4 (96.5%) > NaCl (56.8%) > MgCl2 (50.5%). An anti-fouling test revealed that the PPA/GO membrane had excellent anti-fouling properties due to the enhanced hydrophilicity and decreased roughness induced by the GO nanosheets. Thus, the PPA/GO membrane can be efficiently and endurably applied in water purification.


Scientific Reports | 2016

A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate.

Qin Luo; Changwei Zhao; Guixia Liu; Hao Ren

A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g−1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.


Water Science and Technology | 2010

Desalination of brackish groundwater by direct contact membrane distillation

Deyin Hou; Jun Wang; Dan Qu; Zhaokun Luan; Changwei Zhao; Xiaojing Ren

The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%.


Water Science and Technology | 2009

Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation

Deyin Hou; Jun Wang; Dan Qu; Zhaokun Luan; Changwei Zhao; Xiaojing Ren

Fabrication of polyvinylidene fluoride (PVDF) hydrophobic asymmetric hollow fiber membranes was studied by introducing inorganic salt LiCl and water soluble polymer polyethylene glycol (PEG) 1500, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. The membranes properties also were tested and characterized. It is found that the non-solvent additive can increase membranes porosity, ether LiCl or PEG 1500. Because of the addition of PEG 1500, the PVDF membranes obtained a rough topography on the membrane surface and the contact angle of the PVDF membranes increased to 113.50 degrees compared to 89.82 degrees of the PVDF membranes spun without an additive. During direct contact membrane distillation (DCMD) of 0.6 M sodium chloride solution, the PVDF membranes spun with PEG 1500 as a non-solvent additive achieved higher water permeation flux compared to the membranes spun from PVDF/DMAc and PVDF/DMAC/LiCl dopes, but the latter two membranes exhibited higher salt rejection rate.

Collaboration


Dive into the Changwei Zhao's collaboration.

Top Co-Authors

Avatar

Zhaokun Luan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Deyin Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Ren

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pei Li

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Yong Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhiping Jia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dan Qu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge