Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanoch Kronman is active.

Publication


Featured researches published by Chanoch Kronman.


Infection and Immunity | 2000

Attenuated Nontoxinogenic and Nonencapsulated Recombinant Bacillus anthracis Spore Vaccines Protect against Anthrax

Sara Cohen; I. Mendelson; Zeev Altboum; David Kobiler; Eytan Elhanany; T. Bino; M. Leitner; I. Inbar; H. Rosenberg; Yehoshua Gozes; R. Barak; M. Fisher; Chanoch Kronman; Baruch Velan; Avigdor Shafferman

ABSTRACT Several highly attenuated spore-forming nontoxinogenic and nonencapsulated Bacillus anthracis vaccines differing in levels of expression of recombinant protective antigen (rPA) were constructed. Biochemical analyses (including electrospray mass spectroscopy and N terminus amino acid sequencing) as well as biological and immunological tests demonstrated that the rPA retains the characteristics of native PA. A single immunization of guinea pigs with 5 × 107 spores of one of these recombinant strains, MASC-10, expressing high levels of rPA (≥100 μg/ml) from a constitutive heterologous promoter induced high titers of neutralizing anti-PA antibodies. This immune response was long lasting (at least 12 months) and provided protection against a lethal challenge of virulent (Vollum) anthrax spores. The recombinant B. anthracis spore vaccine appears to be more efficacious than the vegetative cell vaccine. Furthermore, while results clearly suggest a direct correlation between the level of expression of PA and the potency of the vaccine, they also suggest that some B. anthracisspore-associated antigen(s) may contribute in a significant manner to protective immunity.


Journal of Biological Chemistry | 1998

Functional Characteristics of the Oxyanion Hole in Human Acetylcholinesterase

Arie Ordentlich; Dov Barak; Chanoch Kronman; Naomi Ariel; Yoffi Segall; Baruch Velan; Avigdor Shafferman

The contribution of the oxyanion hole to the functional architecture and to the hydrolytic efficiency of human acetylcholinesterase (HuAChE) was investigated through single replacements of its elements, residues Gly-121, Gly-122 and the adjacent residue Gly-120, by alanine. All three substitutions resulted in about 100-fold decrease of the bimolecular rate constants for hydrolysis of acetylthiocholine; however, whereas replacements of Gly-120 and Gly-121 affected only the turnover number, mutation of residue Gly-122 had an effect also on the Michaelis constant. The differential behavior of the G121A and G122A enzymes was manifested also toward the transition state analogm-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA), organophosphorous inhibitors, carbamates, and toward selected noncovalent active center ligands. Reactivity of both mutants toward TMTFA was 2000–11,000-fold lower than that of the wild type HuAChE; however, the G121A enzyme exhibited a rapid inhibition pattern, as opposed to the slow binding kinetics shown by the G122A enzyme. For both phosphates (diethyl phosphorofluoridate, diisopropyl phosphorofluoridate, and paraoxon) and phosphonates (sarin and soman), the decrease in inhibitory activity toward the G121A enzyme was very substantial (2000–6700-fold), irrespective of size of the alkoxy substituents on the phosphorus atom. On the other hand, for the G122A HuAChE the relative decline in reactivity toward phosphonates (500–460-fold) differed from that toward the phosphates (12–95-fold). Although formation of Michaelis complexes with substrates does not seem to involve significant interaction with the oxyanion hole, interactions with this motif are a major stabilizing element in accommodation of covalent inhibitors like organophosphates or carbamates. These observations and molecular modeling suggest that replacements of residues Gly-120 or Gly-121 by alanine alter the structure of the oxyanion hole motif, abolishing the H-bonding capacity of residue at position 121. These mutations weaken the interaction between HuAChE and the various ligands by 2.7–5.0 kcal/mol. In contrast, variations in reactivity due to replacement of residue Gly-122 seem to result from steric hindrance at the active center acyl pocket.


Journal of Biological Chemistry | 1996

The Architecture of Human Acetylcholinesterase Active Center Probed by Interactions with Selected Organophosphate Inhibitors

Arie Ordentlich; Dov Barak; Chanoch Kronman; Naomi Ariel; Yoffi Segall; Baruch Velan; Avigdor Shafferman

The role of the functional architecture of human acetylcholinesterase (HuAChE) active center in facilitating reactions with organophosphorus inhibitors was examined by a combination of site-directed mutagenesis and kinetic studies of phosphorylation with organophosphates differing in size of their alkoxy substituents and in the nature of the leaving group. Replacements of residues Phe-295 and Phe-297, constituting the HuAChE acyl pocket, increase up to 80-fold the reactivity of the enzymes toward diisopropyl phosphorofluoridate, diethyl phosphorofluoridate, and p-nitrophenyl diethyl phosphate (paraoxon), indicating the role of this subsite in accommodating the phosphate alkoxy substituent. On the other hand, a decrease of up to 160-fold in reactivity was observed for enzymes carrying replacements of residues Tyr-133, Glu-202, and Glu-450, which are constituents of the hydrogen bond network in the HuAChE active center, which maintains its unique functional architecture. Replacement of residues Trp-86, Tyr-337, and Phe-338 in the alkoxy pocket affected reactivity toward diisopropyl phosphorofluoridate and paraoxon, but to a lesser extent that toward diethyl phosphorofluoridate, indicating that both the alkoxy substituent and the p-nitrophenoxy leaving group interact with this subsite. In all cases the effects on reactivity toward organophosphates, demonstrated in up to 10,000-fold differences in the values of bimolecular rate constants, were mainly a result of altered affinity of the HuAChE mutants, while the apparent first order rate constants of phosphorylation varied within a narrow range. This finding indicates that the main role of the functional architecture of HuAChE active center in phosphorylation is to facilitate the formation of enzyme-inhibitor Michaelis complexes and that this affinity, rather than the nucleophilic activity of the enzyme catalytic machinery, is a major determinant of HuAChE reactivity toward organophosphates.


Journal of Biological Chemistry | 2000

Hierarchy of Post-translational Modifications Involved in the Circulatory Longevity of Glycoproteins DEMONSTRATION OF CONCERTED CONTRIBUTIONS OF GLYCAN SIALYLATION AND SUBUNIT ASSEMBLY TO THE PHARMACOKINETIC BEHAVIOR OF BOVINE ACETYLCHOLINESTERASE

Chanoch Kronman; Theodor Chitlaru; Eytan Elhanany; Baruch Velan; Avigdor Shafferman

The tetrameric form of native serum-derived bovine acetylcholinesterase is retained in the circulation for much longer periods (mean residence time, MRT = 1390 min) than recombinant bovine acetylcholinesterase (rBoAChE) produced in the HEK-293 cell system (MRT = 57 min). Extensive matrix-assisted laser desorption ionization-time of flight analyses established that the basic structures of the N-glycans associated with the native and recombinant enzymes are similar (the major species (50–60%) are of the biantennary fucosylated type and 20–30% are of the triantennary type), yet the glycan termini of the native enzyme are mostly capped with sialic acid (82%) and α-galactose (12%), whereas glycans of the recombinant enzyme exhibit a high level of exposed β-galactose residues (50%) and a lack of α-galactose. Glycan termini of both fetal bovine serum and rBoAChE were altered in vitro using exoglycosidases and sialyltransferase or in vivo by a HEK-293 cell line developed specifically to allow efficient sialic acid capping of β-galactose-exposed termini. In addition, the dimeric and monomeric forms of rBoAChE were quantitatively converted to tetramers by complexation with a synthetic peptide representing the human ColQ-derived proline-rich attachment domain. Thus by controlling both the level and nature ofN-glycan capping and subunit assembly, we generated and characterized 9 distinct bovine AChE glycoforms displaying a 400-fold difference in their circulatory lifetimes (MRT = 3.5–1390 min). This revealed some general rules and a hierarchy of post-translation factors determining the circulatory profile of glycoproteins. Accordingly, an rBoAChE was generated that displayed a circulatory profile indistinguishable from the native form.


Infection and Immunity | 2003

Effective Protective Immunity to Yersinia pestis Infection Conferred by DNA Vaccine Coding for Derivatives of the F1 Capsular Antigen

Haim Grosfeld; Sara Cohen; Tamar Bino; Yehuda Flashner; Raphael Ber; Emanuelle Mamroud; Chanoch Kronman; Avigdor Shafferman; Baruch Velan

ABSTRACT Three plasmids expressing derivatives of the Yersinia pestis capsular F1 antigen were evaluated for their potential as DNA vaccines. These included plasmids expressing the full-length F1, F1 devoid of its putative signal peptide (deF1), and F1 fused to the signal-bearing E3 polypeptide of Semliki Forest virus (E3/F1). Expression of these derivatives in transfected HEK293 cells revealed that deF1 is expressed in the cytosol, E3/F1 is targeted to the secretory cisternae, and the nonmodified F1 is rapidly eliminated from the cell. Intramuscular vaccination of mice with these plasmids revealed that the vector expressing deF1 was the most effective in eliciting anti-F1 antibodies. This response was not limited to specific mouse strains or to the mode of DNA administration, though gene gun-mediated vaccination was by far more effective than intramuscular needle injection. Vaccination of mice with deF1 DNA conferred protection against subcutaneous infection with the virulent Y. pestis Kimberley53 strain, even at challenge amounts as high as 4,000 50% lethal doses. Antibodies appear to play a major role in mediating this protection, as demonstrated by passive transfer of anti-deF1 DNA antiserum. Taken together, these observations indicate that a tailored genetic vaccine based on a bacterial protein can be used to confer protection against plague in mice without resorting to regimens involving the use of purified proteins.


FEBS Letters | 1993

Engineering resistance to ‘aging’ of phosphylated human acetylcholinesterase Role of hydrogen bond network in the active center

Arie Ordentlich; Chanoch Kronman; Dov Barak; Dana Stein; Naomi Ariel; Dino Marcus; Baruch Velan; Avigdor Shafferman

Recombinant human acetylcholinesterase (HuAChE) and selected mutants (E202Q, Y337A, E450A) were studied with respect to catalytic activity towards charged and noncharged substrates, phosphylation with organophosphorus (OP) inhibitors and subsequent aging of the OP‐conjugates. Amino acid E450, unlike residues E202 and Y337, is not within interaction distance from the active center. Yet, the bimolecular rates of catalysis and phosphylation are 30 100 fold lower for both E450A and E202Q compared to Y337A or the wild type and in both mutants the resulting OP‐conjugates show striking resistance to aging. It is proposed that a hydrogen bond network, that maintains the functional architecture of the active center, involving water molecules and residues E202 and E450, is responsible for the observed behaviour.


Cellular and Molecular Neurobiology | 1991

Recombinant human acetylcholinesterase is secreted from transiently transfected 293 cells as a soluble globular enzyme

Baruch Velan; Chanoch Kronman; Haim Grosfeld; Moshe Leitner; Yehoshua Gozes; Yehuda Flashner; Tamar Sery; Sara Cohen; Revital Ben-Aziz; Shlomo Seidman; Avigdor Shafferman; Hermona Soreq

Summary1.Coding sequences for the human acetylcholinesterase (HuAChE; EC 3.1.1.7) hydrophilic subunit were subcloned in an expression plasmid vector under the control of cytomegalovirus IE gene enhancer-promoter. The human embryonic kidney cell line 293, transiently transfected with this vector, expressed catalytically active acetylcholinesterase.2.The recombinant gene product exhibits biochemical traits similar to native “true” acetylcholinesterase as manifested by characteristic substrate inhibition, aKm of 117µM toward acetylthiocholine, and a high sensitivity to the specific acetylcholinesterase inhibitor BW284C51.3.The transiently transfected 293 cells (100 mm dish) produce in 24 hr active enzyme capable of hydrolyzing 1500 nmol acetylthiocholine per min. Eighty percent of the enzymatic activity appears in the cell growth medium as soluble acetylcholinesterase; most of the cell associated activity is confined to the cytosolic fraction requiring neither detergent nor high salt for its solubilization.4.The active secreted recombinant enzyme appears in the monomeric, dimeric, and tetrameric globular hydrophilic molecular forms.5.In conclusion, the catalytic subunit expressed from the hydrophylic AChE cDNA species has the inherent potential to be secreted in the soluble globular form and to generate polymorphism through self-association.


Infection and Immunity | 2003

Use of a Promoter Trap System in Bacillus anthracis and Bacillus subtilis for the Development of Recombinant Protective Antigen-Based Vaccines

Orit Gat; Itzhak Inbar; Ronit Aloni-Grinstein; E. Zahavy; Chanoch Kronman; I. Mendelson; Sara Cohen; Baruch Velan; Avigdor Shafferman

ABSTRACT We have recently reported Bacillus anthracis attenuated live vaccine strains efficiently expressing recombinant protective antigen (rPA) and have shown a direct correlation between the level of rPA secreted by these cells and efficacy (S. Cohen, I. Mendelson, Z. Altboum, D. Kobiler, E. Elhanany, T. Bino, M. Leitner, I. Inbar, H. Rosenberg, Y. Gozes, R. Barak, M. Fisher, C. Kronman, B. Velan, and A. Shafferman, Infect. Immun. 68:4549-4558, 2000). To isolate more potent Bacillus promoters for a further increase in the production of rPA, we developed a promoter trap system based on various gfp reporter genes adapted for use in both Bacillus subtilis and B. anthracis backgrounds. Accordingly, a B. anthracis library of 6,000 clones harboring plasmids with chromosomal B. anthracis DNA fragments inserted upstream from gfpuv was constructed. Based on fluorescence intensity, 57 clones carrying potentially strong promoters were identified, some of which were DNA sequenced. The most potent B. anthracis promoter identified (Pntr; 271 bp) was 500 times more potent than the native pagA promoter and 70 times more potent than the α-amylase promoter (Pamy). This very potent promoter was tested along with the other promoters (which are three, six, and eight times more potent than Pamy) for the ability to drive expression of rPA in either B. subtilis or B. anthracis. The number of cell-associated pre-PA molecules in B. anthracis was found to correlate well with the strength of the promoter. However, there appeared to be an upper limit to the amount of mature PA secreted into the medium, which did not exceed that driven by Pamy. Furthermore, the rPA constructs fused to the very potent promoters proved to be deleterious to the bacterial hosts and consequently led to genetic instability of the PA expression plasmid. Immunization with attenuated B. anthracis expressing rPA under the control of promoters more potent than Pamy was less efficient in eliciting anti-PA antibodies than that attained with Pamy. The results are consistent with the notion that overexpression of PA leads to severe secretion stress and have practical implications for the design of second-generation rPA-based vaccines.


Molecular Pharmacology | 2006

Comparison of Polyethylene Glycol-Conjugated Recombinant Human Acetylcholinesterase and Serum Human Butyrylcholinesterase as Bioscavengers of Organophosphate Compounds

Ofer Cohen; Chanoch Kronman; Lily Raveh; Ohad Mazor; Arie Ordentlich; Avigdor Shafferman

Comparative protection studies in mice demonstrate that on a molar basis, recombinant human acetylcholinesterase (rHuAChE) confers higher levels of protection than native human butyrylcholinesterase (HuBChE) against organophosphate (OP) compound intoxication. For example, mice challenged with 2.5 LD50 of O-isopropyl methylphosphonofluoridate (sarin), pinacolylmethyl phosphonofluoridate (soman), and O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothiolate (VX) after treatment with equimolar amounts of the two cholinesterases displayed 80, 100, and 100% survival, respectively, when pre-treatment was carried out with rHuAChE and 0, 20, and 60% survival, respectively, when pretreatment was carried out with HuBChE. Kinetic studies and active site titration analyses of the tested OP compounds with acetylcholinesterases (AChEs) and butyrylcholinesterases (BChEs) from different mammalian species demonstrate that the superior in vivo efficacy of acetyl-cholinesterases is in accordance with the higher stereoselectivity of AChE versus BChE toward the toxic enantiomers comprising the racemic mixtures of the various OP agents. In addition, we show that polyethylene glycol-conjugated (PEGy-lated) rHuAChE, which is characterized by a significantly extended circulatory residence both in mice and monkeys ( Biochem J357:795-802, 2001 ; Biochem J378:117-128, 2004 ), retains full reactivity toward OP compounds both in vitro and in vivo and provides a higher level of protection to mice against OP poisoning, compared with native serum-derived HuBChE. Indeed, PEGylated rHuAChE also confers superior prophylactic protection when administered intravenously or intramuscularly over 20 h before exposure of mice to a lethal dose of VX (1.3-1.5 LD50). These findings together with the observations that the PEGylated rHuAChE exhibits unaltered biodistribution and high bioavailability present a case for using PEGylated rHuAChE as a very efficacious bioscavenger of OP agents.


Toxicology reports | 2014

Antibody/doxycycline combined therapy for pulmonary ricinosis: Attenuation of inflammation improves survival of ricin-intoxicated mice

Yoav Gal; Ohad Mazor; Ron Alcalay; Nehama Seliger; Moshe Aftalion; Anita Sapoznikov; Reut Falach; Chanoch Kronman; Tamar Sabo

Ricin, a highly toxic plant-derived toxin, is considered a potential weapon in biological warfare due to its high availability and ease of preparation. Pulmonary exposure to ricin results in the generation of an acute edematous inflammation followed by respiratory insufficiency and death. Passive immunization with polyclonal anti-ricin antibodies conferred protection against pulmonary ricinosis, however, at clinically-relevant time points for treatment, survival rates were limited. In this study, intranasal instillation of a lethal dose of ricin to mice, served as a lung challenge model for the evaluation and comparison of different therapeutic modalities against pulmonary ricinosis. We show that treatment with doxycycline resulted in a significant reduction of pro-inflammatory cytokines, markers of oxidative stress and capillary permeability in the lungs of the mice. Moreover, survival rates of mice intoxicated with ricin and treated 24 h later with anti-ricin antibody were significantly improved by co-administration of doxycycline. In contrast, co-administration of the steroid drug dexamethasone with anti-ricin antibodies did not increase survival rates when administered at late hours after intoxication, however dexamethasone did exert a positive effect on survival when applied in conjunction with the doxycycline treatment. These studies strongly suggest that combined therapy, comprised of neutralizing anti-ricin antibodies and an appropriate anti-inflammatory agent, can promote high-level protection against pulmonary ricinosis at clinically-relevant time points post-exposure.

Collaboration


Dive into the Chanoch Kronman's collaboration.

Top Co-Authors

Avatar

Baruch Velan

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avigdor Shafferman

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Arie Ordentlich

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Dov Barak

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Naomi Ariel

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Ofer Cohen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ohad Mazor

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Tamar Sabo

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Sara Cohen

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yoav Gal

Israel Institute for Biological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge