Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Cohen is active.

Publication


Featured researches published by Sara Cohen.


Infection and Immunity | 2000

Attenuated Nontoxinogenic and Nonencapsulated Recombinant Bacillus anthracis Spore Vaccines Protect against Anthrax

Sara Cohen; I. Mendelson; Zeev Altboum; David Kobiler; Eytan Elhanany; T. Bino; M. Leitner; I. Inbar; H. Rosenberg; Yehoshua Gozes; R. Barak; M. Fisher; Chanoch Kronman; Baruch Velan; Avigdor Shafferman

ABSTRACT Several highly attenuated spore-forming nontoxinogenic and nonencapsulated Bacillus anthracis vaccines differing in levels of expression of recombinant protective antigen (rPA) were constructed. Biochemical analyses (including electrospray mass spectroscopy and N terminus amino acid sequencing) as well as biological and immunological tests demonstrated that the rPA retains the characteristics of native PA. A single immunization of guinea pigs with 5 × 107 spores of one of these recombinant strains, MASC-10, expressing high levels of rPA (≥100 μg/ml) from a constitutive heterologous promoter induced high titers of neutralizing anti-PA antibodies. This immune response was long lasting (at least 12 months) and provided protection against a lethal challenge of virulent (Vollum) anthrax spores. The recombinant B. anthracis spore vaccine appears to be more efficacious than the vegetative cell vaccine. Furthermore, while results clearly suggest a direct correlation between the level of expression of PA and the potency of the vaccine, they also suggest that some B. anthracisspore-associated antigen(s) may contribute in a significant manner to protective immunity.


Infection and Immunity | 2002

Search for Potential Vaccine Candidate Open Reading Frames in the Bacillus anthracis Virulence Plasmid pXO1: In Silico and In Vitro Screening

Naomi Ariel; Anat Zvi; Haim Grosfeld; Orit Gat; Y. Inbar; Baruch Velan; Sara Cohen; Avigdor Shafferman

ABSTRACT A genomic analysis of the Bacillus anthracis virulence plasmid pXO1, aimed at identifying potential vaccine candidates and virulence-related genes, was carried out. The 143 previously defined open reading frames (ORFs) (R. T. Okinaka, K. Cloud, O. Hampton, A. R. Hoffmaster, K. K. Hill, P. Keim, T. M. Koehler, G. Lamke, S. Kumano, J. Mahillon, D. Manter, Y. Martinez, D. Ricke, R. Svensson, and P. J. Jackson, J. Bacteriol. 181:6509-6515, 1999) were subjected to extensive sequence similarity searches (with the nonredundant and unfinished microbial genome databases), as well as motif, cellular location, and domain analyses. A comparative genomics analysis was conducted with the related genomes of Bacillus subtilis, Bacillus halodurans, and Bacillus cereus and the pBtoxis plasmid of Bacillus thuringiensis var. israeliensis. As a result, the percentage of ORFs with clues about their functions increased from ∼30% (as previously reported) to more than 60%. The bioinformatics analysis permitted identification of novel genes with putative relevance for pathogenesis and virulence. Based on our analyses, 11 putative proteins were chosen as targets for functional genomics studies. A rapid and efficient functional screening method was developed, in which PCR-amplified full-length linear DNA products of the selected ORFs were transcribed and directly translated in vitro and their immunogenicities were assessed on the basis of their reactivities with hyperimmune anti-B. anthracis antisera. Of the 11 ORFs selected for analysis, 9 were successfully expressed as full-length polypeptides, and 3 of these were found to be antigenic and to have immunogenic potential. The latter ORFs are currently being evaluated to determine their vaccine potential.


Infection and Immunity | 2003

Genome-Based Bioinformatic Selection of Chromosomal Bacillus anthracis Putative Vaccine Candidates Coupled with Proteomic Identification of Surface-Associated Antigens

Naomi Ariel; Anat Zvi; K. S. Makarova; Theodor Chitlaru; Eytan Elhanany; Baruch Velan; Sara Cohen; A. M. Friedlander; Avigdor Shafferman

ABSTRACT Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.


Infection and Immunity | 2004

Generation of Yersinia pestis Attenuated Strains by Signature-Tagged Mutagenesis in Search of Novel Vaccine Candidates

Yehuda Flashner; Emanuelle Mamroud; T. Avital Tidhar; Raphael Ber; Moshe Aftalion; David Gur; Shirley Lazar; Anat Zvi; Tamar Bino; Naomi Ariel; Baruch Velan; Avigdor Shafferman; Sara Cohen

ABSTRACT In a search for novel attenuated vaccine candidates for use against Yersinia pestis, the causative agent of plague, a signature-tagged mutagenesis strategy was used and optimized for a subcutaneously infected mouse model. A library of tagged mutants of the virulent Y. pestis Kimberley53 strain was generated. Screening of 300 mutants through two consecutive cycles resulted in selection of 16 mutant strains that were undetectable in spleens 48 h postinfection. Each of these mutants was evaluated in vivo by assays for competition against the wild-type strain and for virulence following inoculation of 100 CFU (equivalent to 100 50% lethal doses [LD50] of the wild type). A wide spectrum of attenuation was obtained, ranging from avirulent mutants exhibiting competition indices of 10−5 to 10−7 to virulent mutants exhibiting a delay in the mean time to death or mutants indistinguishable from the wild type in the two assays. Characterization of the phenotypes and genotypes of the selected mutants led to identification of virulence-associated genes coding for factors involved in global bacterial physiology (e.g., purH, purK, dnaE, and greA) or for hypothetical polypeptides, as well as for the virulence regulator gene lcrF. One of the avirulent mutant strains (LD50, >107 CFU) was found to be disrupted in the pcm locus, which is presumably involved in the bacterial response to environmental stress. This Kimberley53pcm mutant was superior to the EV76 live vaccine strain because it induced 10- to 100-fold-higher antibody titers to the protective V and F1 antigens and because it conferred efficacious protective immunity.


Molecular Microbiology | 2005

The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant

Orit Gat; Itai Mendelson; Theodor Chitlaru; Naomi Ariel; Zeev Altboum; Haim Levy; Shay Weiss; Haim Grosfeld; Sara Cohen; Avigdor Shafferman

Here we describe the characterization of a lipoprotein previously proposed as a potential Bacillus anthracis virulence determinant and vaccine candidate. This protein, designated MntA, is the solute‐binding component of a manganese ion ATP‐binding cassette transporter. Coupled proteomic‐serological screen of a fully virulent wild‐type B. anthracis Vollum strain, confirmed that MntA is expressed both in vitro and during infection. Expression of MntA is shown to be independent of the virulence plasmids pXO1 and pXO2. An mntA deletion, generated by allelic replacement, results in complete loss of MntA expression and its phenotypic analysis revealed: (i) impaired growth in rich media, alleviated by manganese supplementation; (ii) increased sensitivity to oxidative stress; and (iii) delayed release from cultured macrophages. The ΔmntA mutant expresses the anthrax‐associated classical virulence factors, lethal toxin and capsule, in vitro as well as in vivo, and yet the mutation resulted in severe attenuation; a 104‐fold drop in LD50 in a guinea pig model. MntA expressed in trans allowed to restore, almost completely, the virulence of the ΔmntA B. anthracis strain. We propose that MntA is a novel B. anthracis virulence determinant essential for the development of anthrax disease, and that B. anthracisΔmntA strains have the potential to serve as platform for future live attenuated vaccines.


Infection and Immunity | 2006

Interaction of Yersinia pestis with Macrophages: Limitations in YopJ-Dependent Apoptosis

Ayelet Zauberman; Sara Cohen; Emanuelle Mamroud; Yehuda Flashner; Avital Tidhar; Raphael Ber; Eytan Elhanany; Avigdor Shafferman; Baruch Velan

ABSTRACT The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Kimberley53 strain. Y. pestis exerts YopJ-dependent suppression of tumor necrosis factor alpha secretion and phosphorylation of mitogen-activated protein kinases and thus resembles enteropathogenic Yersinia. However, Y. pestis is less able to activate caspases, to suppress NF-κB activation, and to induce apoptosis in macrophages than the high-virulence Y. enterocolitica WA O:8 strain. These differences appear to be related to lower efficiency of YopJ effector translocation by Y. pestis. The efficiencies of effector translocation and of apoptosis induction can be enhanced either by using a high bacterial load in a synchronized infection or by overexpressing exogenous YopJ in Y. pestis. Replacing YopJ with the homologous Y. enterocolitica effector YopP can further enhance these effects. Overexpression of YopP in a yopJ-deleted Y. pestis background leads to rapid and effective translocation into target cells, providing Y. pestis with the high cytotoxic potential of Y. enterocolitica WA O:8. We suggest that the relative inferiority of Y. pestis in triggering cell death in macrophages may be advantageous for its in vivo propagation in the early stages of infection.


Infection and Immunity | 2006

Search for Bacillus anthracis Potential Vaccine Candidates by a Functional Genomic-Serologic Screen

Orit Gat; Haim Grosfeld; Naomi Ariel; Itzhak Inbar; Galia Zaide; Yehoshua Broder; Anat Zvi; Theodor Chitlaru; Zeev Altboum; Dana Stein; Sara Cohen; Avigdor Shafferman

ABSTRACT Bacillus anthracis proteins that possess antigenic properties and are able to evoke an immune response were identified by a reductive genomic-serologic screen of a set of in silico-preselected open reading frames (ORFs). The screen included in vitro expression of the selected ORFs by coupled transcription and translation of linear PCR-generated DNA fragments, followed by immunoprecipitation with antisera from B. anthracis-infected animals. Of the 197 selected ORFs, 161 were chromosomal and 36 were on plasmids pXO1 and pXO2, and 138 of the 197 ORFs had putative functional annotations (known ORFs) and 59 had no assigned functions (unknown ORFs). A total of 129 of the known ORFs (93%) could be expressed, whereas only 38 (64%) of the unknown ORFs were successfully expressed. All 167 expressed polypeptides were subjected to immunoprecipitation with the anti-B. anthracis antisera, which revealed 52 seroreactive immunogens, only 1 of which was encoded by an unknown ORF. The high percentage of seroreactive ORFs among the functionally annotated ORFs (37%; 51/129) attests to the predictive value of the bioinformatic strategy used for vaccine candidate selection. Furthermore, the experimental findings suggest that surface-anchored proteins and adhesins or transporters, such as cell wall hydrolases, proteins involved in iron acquisition, and amino acid and oligopeptide transporters, have great potential to be immunogenic. Most of the seroreactive ORFs that were tested as DNA vaccines indeed appeared to induce a humoral response in mice. We list more than 30 novel B. anthracis immunoreactive virulence-related proteins which could be useful in diagnosis, pathogenesis studies, and future anthrax vaccine development.


PLOS ONE | 2009

The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague

Avital Tidhar; Yehuda Flashner; Sara Cohen; Yinon Levi; Ayelet Zauberman; David Gur; Moshe Aftalion; Eytan Elhanany; Anat Zvi; Avigdor Shafferman; Emanuelle Mamroud

Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.


Infection and Immunity | 2003

Effective Protective Immunity to Yersinia pestis Infection Conferred by DNA Vaccine Coding for Derivatives of the F1 Capsular Antigen

Haim Grosfeld; Sara Cohen; Tamar Bino; Yehuda Flashner; Raphael Ber; Emanuelle Mamroud; Chanoch Kronman; Avigdor Shafferman; Baruch Velan

ABSTRACT Three plasmids expressing derivatives of the Yersinia pestis capsular F1 antigen were evaluated for their potential as DNA vaccines. These included plasmids expressing the full-length F1, F1 devoid of its putative signal peptide (deF1), and F1 fused to the signal-bearing E3 polypeptide of Semliki Forest virus (E3/F1). Expression of these derivatives in transfected HEK293 cells revealed that deF1 is expressed in the cytosol, E3/F1 is targeted to the secretory cisternae, and the nonmodified F1 is rapidly eliminated from the cell. Intramuscular vaccination of mice with these plasmids revealed that the vector expressing deF1 was the most effective in eliciting anti-F1 antibodies. This response was not limited to specific mouse strains or to the mode of DNA administration, though gene gun-mediated vaccination was by far more effective than intramuscular needle injection. Vaccination of mice with deF1 DNA conferred protection against subcutaneous infection with the virulent Y. pestis Kimberley53 strain, even at challenge amounts as high as 4,000 50% lethal doses. Antibodies appear to play a major role in mediating this protection, as demonstrated by passive transfer of anti-deF1 DNA antiserum. Taken together, these observations indicate that a tailored genetic vaccine based on a bacterial protein can be used to confer protection against plague in mice without resorting to regimens involving the use of purified proteins.


PLOS ONE | 2009

Yersinia pestis Endowed with Increased Cytotoxicity Is Avirulent in a Bubonic Plague Model and Induces Rapid Protection against Pneumonic Plague

Ayelet Zauberman; Avital Tidhar; Yinon Levy; Erez Bar-Haim; Gideon Halperin; Yehuda Flashner; Sara Cohen; Avigdor Shafferman; Emanuelle Mamroud

An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector YopJ, as opposed to the readily translocated YopP, the YopJ homologue of the enteropathogen Yersinia enterocolitica O∶8. This led us to suggest that reduced cytotoxic potency may allow pathogen propagation within a shielded niche, leading to increased virulence. To test the relationship between cytotoxic potential and virulence, we replaced Y. pestis YopJ with YopP. The YopP-expressing Y. pestis strain exhibited high cytotoxic activity against macrophages in vitro. Following subcutaneous infection, this strain had reduced ability to colonize internal organs, was unable to induce septicemia and exhibited at least a 107-fold reduction in virulence. Yet, upon intravenous or intranasal infection, it was still as virulent as the wild-type strain. The subcutaneous administration of the cytotoxic Y. pestis strain appears to activate a rapid and potent systemic, CTL-independent, immunoprotective response, allowing the organism to overcome simultaneous coinfection with 10,000 LD50 of virulent Y. pestis. Moreover, three days after subcutaneous administration of this strain, animals were also protected against septicemic or primary pneumonic plague. Our findings indicate that an inverse relationship exists between the cytotoxic potential of Y. pestis and its virulence following subcutaneous infection. This appears to be associated with the ability of the engineered cytotoxic Y. pestis strain to induce very rapid, effective and long-lasting protection against bubonic and pneumonic plague. These observations have novel implications for the development of vaccines/therapies against Y. pestis and shed new light on the virulence strategies of Y. pestis in nature.

Collaboration


Dive into the Sara Cohen's collaboration.

Top Co-Authors

Avatar

Avigdor Shafferman

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Baruch Velan

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yehuda Flashner

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Haim Grosfeld

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Emanuelle Mamroud

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Avital Tidhar

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Chanoch Kronman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

David Gur

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Ayelet Zauberman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Raphael Ber

Israel Institute for Biological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge