Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi Ariel is active.

Publication


Featured researches published by Naomi Ariel.


The EMBO Journal | 1992

Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center.

Avigdor Shafferman; B Velan; Arie Ordentlich; C. Kronman; H Grosfeld; M Leitner; Y Flashner; S Cohen; Dov Barak; Naomi Ariel

Amino acids located within and around the ‘active site gorge’ of human acetylcholinesterase (AChE) were substituted. Replacement of W86 yielded inactive enzyme molecules, consistent with its proposed involvement in binding of the choline moiety in the active center. A decrease in affinity to propidium and a concomitant loss of substrate inhibition was observed in D74G, D74N, D74K and W286A mutants, supporting the idea that the site for substrate inhibition and the peripheral anionic site overlap. Mutations of amino acids neighboring the active center (E202, Y337 and F338) resulted in a decrease in the catalytic and the apparent bimolecular rate constants. A decrease in affinity to edrophonium was observed in D74, E202, Y337 and to a lesser extent in F338 and Y341 mutants. E202, Y337 and Y341 mutants were not inhibited efficiently by high substrate concentrations. We propose that binding of acetylcholine, on the surface of AChE, may trigger sequence of conformational changes extending from the peripheral anionic site through W286 to D74, at the entrance of the ‘gorge’, and down to the catalytic center (through Y341 to F338 and Y337). These changes, especially in Y337, could block the entrance/exit of the catalytic center and reduce the catalytic efficiency of AChE.


Infection and Immunity | 2002

Search for Potential Vaccine Candidate Open Reading Frames in the Bacillus anthracis Virulence Plasmid pXO1: In Silico and In Vitro Screening

Naomi Ariel; Anat Zvi; Haim Grosfeld; Orit Gat; Y. Inbar; Baruch Velan; Sara Cohen; Avigdor Shafferman

ABSTRACT A genomic analysis of the Bacillus anthracis virulence plasmid pXO1, aimed at identifying potential vaccine candidates and virulence-related genes, was carried out. The 143 previously defined open reading frames (ORFs) (R. T. Okinaka, K. Cloud, O. Hampton, A. R. Hoffmaster, K. K. Hill, P. Keim, T. M. Koehler, G. Lamke, S. Kumano, J. Mahillon, D. Manter, Y. Martinez, D. Ricke, R. Svensson, and P. J. Jackson, J. Bacteriol. 181:6509-6515, 1999) were subjected to extensive sequence similarity searches (with the nonredundant and unfinished microbial genome databases), as well as motif, cellular location, and domain analyses. A comparative genomics analysis was conducted with the related genomes of Bacillus subtilis, Bacillus halodurans, and Bacillus cereus and the pBtoxis plasmid of Bacillus thuringiensis var. israeliensis. As a result, the percentage of ORFs with clues about their functions increased from ∼30% (as previously reported) to more than 60%. The bioinformatics analysis permitted identification of novel genes with putative relevance for pathogenesis and virulence. Based on our analyses, 11 putative proteins were chosen as targets for functional genomics studies. A rapid and efficient functional screening method was developed, in which PCR-amplified full-length linear DNA products of the selected ORFs were transcribed and directly translated in vitro and their immunogenicities were assessed on the basis of their reactivities with hyperimmune anti-B. anthracis antisera. Of the 11 ORFs selected for analysis, 9 were successfully expressed as full-length polypeptides, and 3 of these were found to be antigenic and to have immunogenic potential. The latter ORFs are currently being evaluated to determine their vaccine potential.


Journal of Biological Chemistry | 1998

Functional Characteristics of the Oxyanion Hole in Human Acetylcholinesterase

Arie Ordentlich; Dov Barak; Chanoch Kronman; Naomi Ariel; Yoffi Segall; Baruch Velan; Avigdor Shafferman

The contribution of the oxyanion hole to the functional architecture and to the hydrolytic efficiency of human acetylcholinesterase (HuAChE) was investigated through single replacements of its elements, residues Gly-121, Gly-122 and the adjacent residue Gly-120, by alanine. All three substitutions resulted in about 100-fold decrease of the bimolecular rate constants for hydrolysis of acetylthiocholine; however, whereas replacements of Gly-120 and Gly-121 affected only the turnover number, mutation of residue Gly-122 had an effect also on the Michaelis constant. The differential behavior of the G121A and G122A enzymes was manifested also toward the transition state analogm-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA), organophosphorous inhibitors, carbamates, and toward selected noncovalent active center ligands. Reactivity of both mutants toward TMTFA was 2000–11,000-fold lower than that of the wild type HuAChE; however, the G121A enzyme exhibited a rapid inhibition pattern, as opposed to the slow binding kinetics shown by the G122A enzyme. For both phosphates (diethyl phosphorofluoridate, diisopropyl phosphorofluoridate, and paraoxon) and phosphonates (sarin and soman), the decrease in inhibitory activity toward the G121A enzyme was very substantial (2000–6700-fold), irrespective of size of the alkoxy substituents on the phosphorus atom. On the other hand, for the G122A HuAChE the relative decline in reactivity toward phosphonates (500–460-fold) differed from that toward the phosphates (12–95-fold). Although formation of Michaelis complexes with substrates does not seem to involve significant interaction with the oxyanion hole, interactions with this motif are a major stabilizing element in accommodation of covalent inhibitors like organophosphates or carbamates. These observations and molecular modeling suggest that replacements of residues Gly-120 or Gly-121 by alanine alter the structure of the oxyanion hole motif, abolishing the H-bonding capacity of residue at position 121. These mutations weaken the interaction between HuAChE and the various ligands by 2.7–5.0 kcal/mol. In contrast, variations in reactivity due to replacement of residue Gly-122 seem to result from steric hindrance at the active center acyl pocket.


Infection and Immunity | 2003

Genome-Based Bioinformatic Selection of Chromosomal Bacillus anthracis Putative Vaccine Candidates Coupled with Proteomic Identification of Surface-Associated Antigens

Naomi Ariel; Anat Zvi; K. S. Makarova; Theodor Chitlaru; Eytan Elhanany; Baruch Velan; Sara Cohen; A. M. Friedlander; Avigdor Shafferman

ABSTRACT Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.


Journal of Bacteriology | 2006

Differential Proteomic Analysis of the Bacillus anthracis Secretome: Distinct Plasmid and Chromosome CO2-Dependent Cross Talk Mechanisms Modulate Extracellular Proteolytic Activities

Theodor Chitlaru; Orit Gat; Yael Gozlan; Naomi Ariel; Avigdor Shafferman

The secretomes of a virulent Bacillus anthracis strain and of avirulent strains (cured of the virulence plasmids pXO1 and pXO2), cultured in rich and minimal media, were studied by a comparative proteomic approach. More than 400 protein spots, representing the products of 64 genes, were identified, and a unique pattern of protein relative abundance with respect to the presence of the virulence plasmids was revealed. In minimal medium under high CO(2) tension, conditions considered to simulate those encountered in the host, the presence of the plasmids leads to enhanced expression of 12 chromosome-carried genes (10 of which could not be detected in the absence of the plasmids) in addition to expression of 5 pXO1-encoded proteins. Furthermore, under these conditions, the presence of the pXO1 and pXO2 plasmids leads to the repression of 14 chromosomal genes. On the other hand, in minimal aerobic medium not supplemented with CO(2), the virulent and avirulent B. anthracis strains manifest very similar protein signatures, and most strikingly, two proteins (the metalloproteases InhA1 and NprB, orthologs of gene products attributed to the Bacillus cereus group PlcR regulon) represent over 90% of the total secretome. Interestingly, of the 64 identified gene products, at least 31 harbor features characteristic of virulence determinants (such as toxins, proteases, nucleotidases, sulfatases, transporters, and detoxification factors), 22 of which are differentially regulated in a plasmid-dependent manner. The nature and the expression patterns of proteins in the various secretomes suggest that distinct CO(2)-responsive chromosome- and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.


Journal of Biological Chemistry | 1996

The Architecture of Human Acetylcholinesterase Active Center Probed by Interactions with Selected Organophosphate Inhibitors

Arie Ordentlich; Dov Barak; Chanoch Kronman; Naomi Ariel; Yoffi Segall; Baruch Velan; Avigdor Shafferman

The role of the functional architecture of human acetylcholinesterase (HuAChE) active center in facilitating reactions with organophosphorus inhibitors was examined by a combination of site-directed mutagenesis and kinetic studies of phosphorylation with organophosphates differing in size of their alkoxy substituents and in the nature of the leaving group. Replacements of residues Phe-295 and Phe-297, constituting the HuAChE acyl pocket, increase up to 80-fold the reactivity of the enzymes toward diisopropyl phosphorofluoridate, diethyl phosphorofluoridate, and p-nitrophenyl diethyl phosphate (paraoxon), indicating the role of this subsite in accommodating the phosphate alkoxy substituent. On the other hand, a decrease of up to 160-fold in reactivity was observed for enzymes carrying replacements of residues Tyr-133, Glu-202, and Glu-450, which are constituents of the hydrogen bond network in the HuAChE active center, which maintains its unique functional architecture. Replacement of residues Trp-86, Tyr-337, and Phe-338 in the alkoxy pocket affected reactivity toward diisopropyl phosphorofluoridate and paraoxon, but to a lesser extent that toward diethyl phosphorofluoridate, indicating that both the alkoxy substituent and the p-nitrophenoxy leaving group interact with this subsite. In all cases the effects on reactivity toward organophosphates, demonstrated in up to 10,000-fold differences in the values of bimolecular rate constants, were mainly a result of altered affinity of the HuAChE mutants, while the apparent first order rate constants of phosphorylation varied within a narrow range. This finding indicates that the main role of the functional architecture of HuAChE active center in phosphorylation is to facilitate the formation of enzyme-inhibitor Michaelis complexes and that this affinity, rather than the nucleophilic activity of the enzyme catalytic machinery, is a major determinant of HuAChE reactivity toward organophosphates.


Infection and Immunity | 2004

Generation of Yersinia pestis Attenuated Strains by Signature-Tagged Mutagenesis in Search of Novel Vaccine Candidates

Yehuda Flashner; Emanuelle Mamroud; T. Avital Tidhar; Raphael Ber; Moshe Aftalion; David Gur; Shirley Lazar; Anat Zvi; Tamar Bino; Naomi Ariel; Baruch Velan; Avigdor Shafferman; Sara Cohen

ABSTRACT In a search for novel attenuated vaccine candidates for use against Yersinia pestis, the causative agent of plague, a signature-tagged mutagenesis strategy was used and optimized for a subcutaneously infected mouse model. A library of tagged mutants of the virulent Y. pestis Kimberley53 strain was generated. Screening of 300 mutants through two consecutive cycles resulted in selection of 16 mutant strains that were undetectable in spleens 48 h postinfection. Each of these mutants was evaluated in vivo by assays for competition against the wild-type strain and for virulence following inoculation of 100 CFU (equivalent to 100 50% lethal doses [LD50] of the wild type). A wide spectrum of attenuation was obtained, ranging from avirulent mutants exhibiting competition indices of 10−5 to 10−7 to virulent mutants exhibiting a delay in the mean time to death or mutants indistinguishable from the wild type in the two assays. Characterization of the phenotypes and genotypes of the selected mutants led to identification of virulence-associated genes coding for factors involved in global bacterial physiology (e.g., purH, purK, dnaE, and greA) or for hypothetical polypeptides, as well as for the virulence regulator gene lcrF. One of the avirulent mutant strains (LD50, >107 CFU) was found to be disrupted in the pcm locus, which is presumably involved in the bacterial response to environmental stress. This Kimberley53pcm mutant was superior to the EV76 live vaccine strain because it induced 10- to 100-fold-higher antibody titers to the protective V and F1 antigens and because it conferred efficacious protective immunity.


BMC Medical Genomics | 2008

Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

Anat Zvi; Naomi Ariel; John Fulkerson; Jerald C. Sadoff; Avigdor Shafferman

BackgroundMycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.MethodsA genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.ResultsCross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.ConclusionThe comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.


The EMBO Journal | 1994

Electrostatic Attraction by Surface Charge does not Contribute to the Catalytic Efficiency of Acetylcholinesterase

Avigdor Shafferman; Arie Ordentlich; Dov Barak; C. Kronman; R Ber; Tamar Bino; Naomi Ariel; R Osman; B Velan

Acetylcholinesterases (AChEs) are characterized by a high net negative charge and by an uneven surface charge distribution, giving rise to a negative electrostatic potential extending over most of the molecular surface. To evaluate the contribution of these electrostatic properties to the catalytic efficiency, 20 single- and multiple-site mutants of human AChE were generated by replacing up to seven acidic residues, vicinal to the rim of the active-center gorge (Glu84, Glu285, Glu292, Asp349, Glu358, Glu389 and Asp390), by neutral amino acids. Progressive simulated replacement of these charged residues results in a gradual decrease of the negative electrostatic potential which is essentially eliminated by neutralizing six or seven charges. In marked contrast to the shrinking of the electrostatic potential, the corresponding mutations had no significant effect on the apparent bimolecular rate constants of hydrolysis for charged and non-charged substrates, or on the Ki value for a charged active center inhibitor. Moreover, the kcat values for all 20 mutants are essentially identical to that of the wild type enzyme, and the apparent bimolecular rate constants show a moderate dependence on the ionic strength, which is invariant for all the enzymes examined. These findings suggest that the surface electrostatic properties of AChE do not contribute to the catalytic rate, that this rate is probably not diffusion-controlled and that long-range electrostatic interactions play no role in stabilization of the transition states of the catalytic process.


Molecular Microbiology | 2005

The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant

Orit Gat; Itai Mendelson; Theodor Chitlaru; Naomi Ariel; Zeev Altboum; Haim Levy; Shay Weiss; Haim Grosfeld; Sara Cohen; Avigdor Shafferman

Here we describe the characterization of a lipoprotein previously proposed as a potential Bacillus anthracis virulence determinant and vaccine candidate. This protein, designated MntA, is the solute‐binding component of a manganese ion ATP‐binding cassette transporter. Coupled proteomic‐serological screen of a fully virulent wild‐type B. anthracis Vollum strain, confirmed that MntA is expressed both in vitro and during infection. Expression of MntA is shown to be independent of the virulence plasmids pXO1 and pXO2. An mntA deletion, generated by allelic replacement, results in complete loss of MntA expression and its phenotypic analysis revealed: (i) impaired growth in rich media, alleviated by manganese supplementation; (ii) increased sensitivity to oxidative stress; and (iii) delayed release from cultured macrophages. The ΔmntA mutant expresses the anthrax‐associated classical virulence factors, lethal toxin and capsule, in vitro as well as in vivo, and yet the mutation resulted in severe attenuation; a 104‐fold drop in LD50 in a guinea pig model. MntA expressed in trans allowed to restore, almost completely, the virulence of the ΔmntA B. anthracis strain. We propose that MntA is a novel B. anthracis virulence determinant essential for the development of anthrax disease, and that B. anthracisΔmntA strains have the potential to serve as platform for future live attenuated vaccines.

Collaboration


Dive into the Naomi Ariel's collaboration.

Top Co-Authors

Avatar

Avigdor Shafferman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Baruch Velan

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Dov Barak

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Arie Ordentlich

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Chanoch Kronman

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Anat Zvi

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Sara Cohen

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Dana Stein

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Tamar Bino

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Yoffi Segall

Israel Institute for Biological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge