Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chao Qin is active.

Publication


Featured researches published by Chao Qin.


Molecular Pharmaceutics | 2014

Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes.

Chao Qin; Bing He; Wenbing Dai; Hua Zhang; Xueqing Wang; Xuan Zhang; Guangji Wang; Lifang Yin; Qiang Zhang

A liposome system modified with chlorotoxin (ClTx), a scorpion venom peptide previously utilized for targeting brain tumors, was established. Its targeting efficiency and antimetastasis behavior against metastatic breast cancer highly expressed MMP-2, the receptor of ClTx, were investigated. 4T1, a metastatic breast cancer cell line derived from a murine breast tumor, was selected as the cell model. As results, the ClTx-modified liposomes displayed specific binding to 4T1 as determined by flow cytometry and confocal imaging. The cytotoxicity assay revealed that the ClTx modification increased the toxicity compared with nonmodified liposomes. In addition, the modified liposomes also exhibited high in vivo targeting efficiency in the BALB/c mice bearing 4T1 tumors. Importantly, this system inhibited the growth of metastatic tumor and prevented the incidence of lung metastasis in mice bearing 4T1 tumors with only low systemic toxicity. The data obtained from the in vitro and in vivo studies confirmed that the ClTx-modified liposomes increased the drug delivery to metastatic breast cancers. This study proved that the ClTx-modified liposomes had targeting ability to metastatic breast cancer in addition to brain cancer, and displayed an obvious antimetastasis effect. Generally, it may provide a promising strategy for metastatic breast cancer therapy.


Molecular Pharmaceutics | 2015

Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics

Yongji Li; Zhannan Wu; Wei He; Chao Qin; Jing Yao; Jianping Zhou; Lifang Yin

About 40% of the marketed drugs and 70-90% of new drug candidates are insoluble in water and therefore poorly bioavailable, which significantly compromises their therapeutic effects. A formulation of nanosuspensions achieved by reducing the pure drug particle size down to seb-micron range is one of the most promising approaches to overcome the insolubility. However, the nanosuspension formulations are subject to instability because of nucleation and particle growth. Therefore, a stabilizer is needed to be incorporated into the nanosuspension formulation during the preparation process to suppress the aggregation of drug particles. β-LG, a globular protein, is broken by heat-induced denaturation, and its hydrophobic area is exposed, which allows it to associate with organic particles. PTX, an insoluble drug, is widely used for the clinical treatment of human cancer. However, this drugs clinical application is greatly limited by intrinsic defects including poor solubility, adverse side effects, and poor tumor penetration. In this study, we prepared β-LG-stabilized PTX nanosuspensions (PTX-NS) by coating the protein onto nanoscaled drug particles, investigating the stabilization effect of β-LG on PTX-NS, and evaluating its in vitro and in vivo performance. PTX-NS with a diameter of approximately 200 nm was easily prepared. β-LG produced significantly stabilized effect on PTX-NS via the interaction between the hydrophobic area of the protein and the hydrophobic surface of the drug particles, which resulted in a conformational change of the protein, the loss of both secondary and tertiary structures, and the transition of Trp residues to a less hydrophobic condition. Importantly, unlike other conventional nanoparticles, PTX-NS could directly translocated across the membrane into the cytosol in an energy-independent manner, without entrapment within the endosomal-lysosomal system. Moreover, compared with Taxol, PTX-NS increased AUC and Cmax by 26- and 16-fold, respectively, and prolonged T1/2 by 314-fold. As expected, PTX-NS had better in vitro and in vivo antitumor activity compared to PTX alone. Additionally, β-LG is cyto- and bio-compatible, and PTX-NS is not toxic to healthy tissues. In conclusion, the present study has suggested the high potency of globular proteins, such as β-LG, as novel biomaterials for nanosuspension platform to improve the drug delivery for disease treatment.


International Journal of Pharmaceutics | 2013

Gastro-floating tablets of cephalexin: Preparation and in vitro/in vivo evaluation

Lifang Yin; Chao Qin; Kaisheng Chen; Chunli Zhu; Hui Cao; Jianping Zhou; Wei He; Qiang Zhang

Gastro-floating tablets of cephalexin were developed to prolong the residence time in major absorption sites. Gastro-floating tablets were prepared and optimized using hydroxypropyl methylcellulose (HPMC K100M) as matrix and sodium bicarbonate as a gas-forming agent. The properties of the tablets in terms of floating lag time, floating time and in vitro release were evaluated. Furthermore, in vivo pharmacokinetic study in fed and fasted beagle dogs was performed. The gastro-floating tablets had short floating lag time and exhibited a satisfactory sustained-release profile in vitro. Compared with conventional capsules, the gastro-floating tablets presented a sustained-release behavior with a relative bioavailability of 99.4%, while the reference sustained-release tablets gave a relative bioavailability of only 39.3%. Meanwhile, the food had significant effect on the pharmacokinetics of sustained-release tablets. It was concluded that the gastro-floating tablets had a sustained-release effect in vitro and in vivo, as well as desired pharmacokinetic properties in both fed and fasted conditions.


International Journal of Pharmaceutics | 2015

Core–shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect

Wei He; Yaqi Lv; Yaping Zhao; Chaoran Xu; Zhu Jin; Chao Qin; Lifang Yin

The present paper attempted to develop temperature-sensitive and core-shell structured gel-nanocarriers (gel-NCs) for paclitaxel (PTX) with 12-hydroxystearic acid (12-HSA) as an organic gelator, which aims at sustaining drug release over time and thus improves the therapeutic effect. The gel-NCs were prepared by a mechanical mixing and high-pressure homogenization method. The gelation transition temperature (Tgel) of the organic phase contained in the cores of the gel-NCs was optimized by a stirring method. The gel-NCs were characterized in terms of the particle size, morphology and in vitro drug release. The in vivo studies, including the antitumor effects on H22 tumor-bearing mice, biocompatibility and toxicity in mice, were performed. Gel-NCs with approximately 170 nm were prepared successfully, and the gelation of the liquid cores at 37°C was achieved, while the amount of gelator was 3.75% (w/w). Due to the gelation of the cores, sustained drug release over time was obtained. Moreover, the PTX-loaded gel-NCs suppressed tumor growth more efficiently than the conventional nanocarriers with better in vivo biocompatibility and no toxicity to other healthy organs. In conclusion, the 12-HSA organogel-based NCs appear to be promising systems for the sustained release of active compounds for a long time and thus improve the therapeutic outcome.


International Journal of Pharmaceutics | 2015

Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability

Wei He; Ke Yang; Lifang Fan; Yaqi Lv; Zhu Jin; Shumin Zhu; Chao Qin; Yiao Wang; Lifang Yin

Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.


International Journal of Pharmaceutics | 2015

Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity.

Chaoran Xu; Wei He; Yaqi Lv; Chao Qin; Lingjia Shen; Lifang Yin

A prodrug-based nanosystem obtained by formulating prodrug and nanotechnology into a system is one of the most promising strategies to enhance drug delivery for disease treatment. Herein, we report a new nanosystem based on HA-PTX conjugates (HA-PTX Ns), which penetrated across cell membranes into cytosol, thus enhancing paclitaxel (PTX) delivery. HA-PTX Ns were successfully obtained based on HA-PTX, and their average particle size was approximately 200 nm. Importantly, unlike other prodrug-based nanosystems, HA-PTX Ns obtained cellular entry without entrapment within the lysosomal-endosomal system by using pathways including clathrin-mediated endocytosis, microtubule-associated internalization, macropinocytosis and cholesterol-dependence. Due to significant accumulation in tumors, HA-PTX Ns had more than a 4-fold decrease in tumor volume on day 14 in contrast with PTX alone. In conclusion, HA-PTX Ns could enter cells, bypass the lysosomal-endosomal system and improve PTX delivery.


International Journal of Pharmaceutics | 2014

Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet

Chao Qin; Wei He; Chunli Zhu; Mengmeng Wu; Zhu Jin; Qiang Zhang; Guangji Wang; Lifang Yin

The marketed compound tablet of metformin hydrochloride (MH) and repaglinide (RG) exhibits perfect multidrug therapeutic effect of type 2 diabetes. However, due to the short half life of the drugs, the tablet has to be administered 2 to 3 times a day, causing inconvenience to patient and fluctuations of plasma concentration. Here, a sandwiched osmotic pump tablet was developed to deliver the two drugs simultaneously at zero-order rate, in which MH and RG were loaded in different layers separated by a push layer. The osmotic pump tablet was prepared by a combination of three tableting procedure and film coating method. The factors including type and amount of propellant, osmotic active agents, amount of porogenic agent, coating weight, orifice diameter were optimized. The pharmacokinetic study was performed in beagle dogs, and the drug concentration in plasma samples was assayed by HPLC-MS/MS method. Simultaneous, controlled release of MH and RG in the first 12 and 8h was achieved from the optimized formulation. A significantly decreased Cmax, prolonged Tmax and satisfactory bioavailability of the osmotic pump tablet were obtained, and a good in vivo-in vitro correlation of the two drugs was also established. In summary, the sandwiched osmotic pump tablet released the MH and RG simultaneously at zero-order rate, and exhibited significant sustained release effect in vivo and good in vivo-in vitro correlation. The designed controlled release system for MH and RG proposed a promising replacement for the marked compound product in the therapy of type 2 diabetes.


ACS Nano | 2018

Nanoplatform Assembled from a CD44-Targeted Prodrug and Smart Liposomes for Dual Targeting of Tumor Microenvironment and Cancer Cells

Yaqi Lv; Chaoran Xu; Xiangmei Zhao; Chenshi Lin; Xin Yang; Xiaofei Xin; Li Zhang; Chao Qin; Xiaopeng Han; Lei Yang; Wei He; Lifang Yin

The tumor microenvironment (TME) plays a critical role in tumor initiation, progression, invasion, and metastasis. Therefore, a therapy that combines chemotherapeutic drugs with a TME modulator could be a promising route for cancer treatment. This paper reports a nanoplatform self-assembled from a hyaluronic acid (HA)-paclitaxel (PTX) (HA-PTX) prodrug and marimastat (MATT)-loaded thermosensitive liposomes (LTSLs) (MATT-LTSLs) for the dual targeting of the TME and cancer cells. Interestingly, the prodrug HA-PTX can self-assemble on both positively and negatively charged liposomes, forming hybrid nanoparticles (HNPs, 100 nm). Triggered by mild hyperthermia, HA-PTX/MATT-LTSLs HNPs rapidly release their payloads into the extracellular environment, and the released HA-PTX quickly enters 4T1 cells through a CD44-HA affinity. The HNPs possess promoted tumor accumulation (1.6-fold), exhibit deep tumor penetration, and significantly inhibit the tumor growth (10-fold), metastasis (100%), and angiogenesis (10-fold). Importantly, by targeting the TME and maintaining its integrity via inhibiting the expression and activity of matrix metalloproteinases (>5-fold), blocking the fibroblast activation by downregulating the TGF-β1 expression (5-fold) and suppressing the degradation of extracellular matrix, the HNPs allow for significant metastasis inhibition. Overall, these findings indicate that a prodrug of an HA-hydrophobic-active compound and liposomes can be self-assembled into a smart nanoplatform for the dual targeting of the TME and tumor cells and efficient combined treatment; additionally, the co-delivery of MATT and HA-PTX with the HNPs is a promising approach for the treatment of metastatic cancer. This study creates opportunities for fabricating multifunctional nanodevices and offers an efficient strategy for disease therapy.


Scientific Reports | 2017

Cytosolic co-delivery of miRNA-34a and docetaxel with core-shell nanocarriers via caveolae-mediated pathway for the treatment of metastatic breast cancer

Li Zhang; Xin Yang; Yaqi Lv; Xiaofei Xin; Chao Qin; Xiaopeng Han; Lei Yang; Wei He; Lifang Yin

Co-delivery of microRNAs and chemotherapeutic drugs into tumor cells is an attractive strategy for synergetic breast cancer therapy due to their complementary mechanisms. In this work, a core-shell nanocarrier coated by cationic albumin was developed to simultaneously deliver miRNA-34a and docetaxel (DTX) into breast cancer cells for improved therapeutic effect. The co-delivery nanocarriers showed a spherical morphology with an average particle size of 183.9 nm, and they efficiently protected miRNA-34a from degradation by RNase and serum. Importantly, the nanocarriers entered the cytosol via a caveolae-mediated pathway without entrapment in endosomes/lysosomes, thus improving the utilization of the cargo. In vitro, the co-delivery nanocarriers suppressed the expression of anti-apoptosis gene Bcl-2 at both transcription and protein levels, inhibited tumor cell migration and efficiently induced cell apoptosis and cytotoxicity. In vivo, the co-delivery nanocarriers prolonged the blood circulation of DTX, enhanced tumor accumulation of the cargo and significantly inhibited tumor growth and metastasis in 4T1-tumor bearing mice models. Taken together, the present nanocarrier co-loading with DTX and miRNA-34a is a new nanoplatform for the combination of insoluble drugs and gene/protein drugs and provides a promising strategy for the treatment of metastatic breast cancer.


Journal of Materials Chemistry B | 2017

Denatured protein stabilized drug nanoparticles: tunable drug state and penetration across the intestinal barrier

Wei He; Yiao Wang; Yaqi Lv; Qingqing Xiao; Ling Ye; Bo Cai; Chao Qin; Xiaopeng Han; Ting Cai; Lifang Yin

Nanosuspensions of drugs are nanosized colloidal dispersions of pure particles. In contrast to conventional nanoparticles, the particles in nanosuspensions feature 100% drug loading. Stiripentol (STP) is an effective drug for severe myoclonic epilepsy of infancy (SMEI); however, because of its low water solubility, high oral doses of STP, up to 50 mg per kg per day in two or three divided doses, must be administered to patients, compromising therapy outcomes. Here, we report STP nanosuspensions (STP-Ns) stabilized with denatured soybean protein isolate (SPI) as a stabilizer to promote the absorption of STP and thus improve therapeutic outcomes. STP-Ns with a drug loading of up to 50% (w/w) and a diameter of 150 nm were successfully prepared. Importantly, in the presence of denatured SPI as a stabilizer, the drug state in the nanosuspensions was tunable by drug loading: low drug loading resulted in the formation of amorphous drug nanoparticles while high drug loading greater than 3.22% (w/w) in formulation induced the formation of nanosuspensions with the coexistence of amorphous and crystalline drug. This new nanosuspension formulation was related to the fact that the protein-drug complex exhibited a much stronger affinity for the drug particles over the protein itself. Interestingly, via the transcytosis pathway, the STP-Ns penetrated across the intestinal barrier into the systemic circulation, with the duodenum as the predominant absorption site. The bioavailability of the STP-Ns was 4-fold as great as that of raw crystals. The discovery of this mechanism for the use of globular protein as a stabilizer for nanosuspensions provides a new route for the preparation of amorphous drug nanoparticles. This work offers a new strategy to widen the application of globular protein and nanosuspensions of insoluble active compounds in drug delivery.

Collaboration


Dive into the Chao Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunyong Wu

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Hua Zhang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ling Ye

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhang

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge