Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles A. Mein is active.

Publication


Featured researches published by Charles A. Mein.


Nature Genetics | 2008

Newly identified genetic risk variants for celiac disease related to the immune response

Karen A. Hunt; Alexandra Zhernakova; Graham Turner; Graham A. Heap; Lude Franke; Marcel Bruinenberg; Jihane Romanos; Lotte C. Dinesen; Anthony W. Ryan; Davinder Panesar; Rhian Gwilliam; Fumihiko Takeuchi; William M. McLaren; Geoffrey Holmes; Peter D. Howdle; Julian R. Walters; David S. Sanders; Raymond J. Playford; Gosia Trynka; Chris Jj Mulder; M. Luisa Mearin; Wieke H. Verbeek; Valerie Trimble; Fiona M. Stevens; Colm O'Morain; N. P. Kennedy; Dermot Kelleher; Daniel J. Pennington; David P. Strachan; Wendy L. McArdle

Our genome-wide association study of celiac disease previously identified risk variants in the IL2–IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 × 10−7). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2–IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.


Nature Genetics | 2011

Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease.

Gosia Trynka; Karen A. Hunt; Nicholas A. Bockett; Jihane Romanos; Vanisha Mistry; Agata Szperl; Sjoerd F. Bakker; Maria Teresa Bardella; Leena Bhaw-Rosun; Gemma Castillejo; Emilio G. de la Concha; Rodrigo Coutinho de Almeida; Kerith Rae M Dias; Cleo C. van Diemen; P Dubois; Richard H. Duerr; Sarah Edkins; Lude Franke; Karin Fransen; Javier Gutierrez; Graham A. Heap; Barbara Hrdlickova; Sarah Hunt; Leticia Plaza Izurieta; Valentina Izzo; Leo A. B. Joosten; Cordelia Langford; Maria Cristina Mazzilli; Charles A. Mein; Vandana Midah

Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.


The Lancet | 2011

High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial.

Adrian R. Martineau; Peter Timms; Graham Bothamley; Yasmeen Hanifa; Kamrul Islam; Alleyna P. Claxton; Geoffrey E. Packe; John Moore-Gillon; Mathina Darmalingam; Robert N. Davidson; Heather Milburn; Lucy V. Baker; Richard D. Barker; Nicholas J Woodward; Timothy R Venton; Korina E. Barnes; Christopher J. Mullett; Anna K. Coussens; Clare Rutterford; Charles A. Mein; Geraint Davies; Robert J. Wilkinson; Vladyslav Nikolayevskyy; Francis Drobniewski; Sandra Eldridge; Chris Griffiths

BACKGROUND Vitamin D was used to treat tuberculosis in the pre-antibiotic era, and its metabolites induce antimycobacterial immunity in vitro. Clinical trials investigating the effect of adjunctive vitamin D on sputum culture conversion are absent. METHODS We undertook a multicentre randomised controlled trial of adjunctive vitamin D in adults with sputum smear-positive pulmonary tuberculosis in London, UK. 146 patients were allocated to receive 2·5 mg vitamin D(3) or placebo at baseline and 14, 28, and 42 days after starting standard tuberculosis treatment. The primary endpoint was time from initiation of antimicrobial treatment to sputum culture conversion. Patients were genotyped for TaqI and FokI polymorphisms of the vitamin D receptor, and interaction analyses were done to assess the influence of the vitamin D receptor genotype on response to vitamin D(3). This trial is registered with ClinicalTrials.gov number NCT00419068. FINDINGS 126 patients were included in the primary efficacy analysis (62 assigned to intervention, 64 assigned to placebo). Median time to sputum culture conversion was 36·0 days in the intervention group and 43·5 days in the placebo group (adjusted hazard ratio 1·39, 95% CI 0·90-2·16; p=0.14). TaqI genotype modified the effect of vitamin D supplementation on time to sputum culture conversion (p(interaction)=0·03), with enhanced response seen only in patients with the tt genotype (8·09, 95% CI 1·36-48·01; p=0·02). FokI genotype did not modify the effect of vitamin D supplementation (p(interaction)=0·85). Mean serum 25-hydroxyvitamin D concentration at 56 days was 101·4 nmol/L in the intervention group and 22·8 nmol/L in the placebo group (95% CI for difference 68·6-88·2; p<0·0001). INTERPRETATION Administration of four doses of 2·5 mg vitamin D(3) increased serum 25-hydroxyvitamin D concentrations in patients receiving intensive-phase treatment for pulmonary tuberculosis. Vitamin D did not significantly affect time to sputum culture conversion in the whole study population, but it did significantly hasten sputum culture conversion in participants with the tt genotype of the TaqI vitamin D receptor polymorphism. FUNDING British Lung Foundation.Summary Background Vitamin D was used to treat tuberculosis in the pre-antibiotic era, and its metabolites induce antimycobacterial immunity in vitro. Clinical trials investigating the effect of adjunctive vitamin D on sputum culture conversion are absent. Methods We undertook a multicentre randomised controlled trial of adjunctive vitamin D in adults with sputum smear-positive pulmonary tuberculosis in London, UK. 146 patients were allocated to receive 2·5 mg vitamin D 3 or placebo at baseline and 14, 28, and 42 days after starting standard tuberculosis treatment. The primary endpoint was time from initiation of antimicrobial treatment to sputum culture conversion. Patients were genotyped for Taq I and Fok I polymorphisms of the vitamin D receptor, and interaction analyses were done to assess the influence of the vitamin D receptor genotype on response to vitamin D 3 . This trial is registered with ClinicalTrials.gov number NCT00419068. Findings 126 patients were included in the primary efficacy analysis (62 assigned to intervention, 64 assigned to placebo). Median time to sputum culture conversion was 36·0 days in the intervention group and 43·5 days in the placebo group (adjusted hazard ratio 1·39, 95% CI 0·90–2·16; p=0.14). Taq I genotype modified the effect of vitamin D supplementation on time to sputum culture conversion (p interaction =0·03), with enhanced response seen only in patients with the tt genotype (8·09, 95% CI 1·36–48·01; p=0·02). Fok I genotype did not modify the effect of vitamin D supplementation (p interaction =0·85). Mean serum 25-hydroxyvitamin D concentration at 56 days was 101·4 nmol/L in the intervention group and 22·8 nmol/L in the placebo group (95% CI for difference 68·6–88·2; p Interpretation Administration of four doses of 2·5 mg vitamin D 3 increased serum 25-hydroxyvitamin D concentrations in patients receiving intensive-phase treatment for pulmonary tuberculosis. Vitamin D did not significantly affect time to sputum culture conversion in the whole study population, but it did significantly hasten sputum culture conversion in participants with the tt genotype of the TaqI vitamin D receptor polymorphism. Funding British Lung Foundation.


Nature Genetics | 1998

A search for type 1 diabetes susceptibility genes in families from the United Kingdom

Charles A. Mein; Laura Esposito; Michael G. Dunn; Gillian C.L. Johnson; Andrew E. Timms; Juliet V. Goy; Annabel N. Smith; Liam Sebag-Montefiore; Marilyn E. Merriman; Amanda Wilson; Lynn E. Pritchard; Francesco Cucca; Anthony H. Barnett; Stephen C. Bain; John A. Todd

Genetic analysis of a mouse model of major histocompatability complex (MHC)-associated autoimmune type 1 (insulin-dependent) diabetes mellitus (IDDM) has shown that the disease is caused by a combination of a major effect at the MHC and at least ten other susceptibility loci elsewhere in the genome. A genome-wide scan of 93 affected sibpair families (ASP) from the UK (UK93) indicated a similar genetic basis for human type 1 diabetes, with the major genetic component at the MHC locus (IDDM1) explaining 34% of the familial clustering of the disease (λs = 2.5; Refs 3,4). In the present report, we have analysed a further 263 multiplex families from the same population (UK263) to provide a total UK data set of 356 ASP families (UK356). Only four regions of the genome outside IDDM1/MHC, which was still the only major locus detected, were not excluded at λs = 3 and lod = –2, of which two showed evidence of linkage: chromosome 10p13–p11 (maximum lod score (MLS) = 4.7, P = 3 × 10 –6, λs = 1.56) and chromosome 16q22–16q24 (MLS = 3.4, P = 6.5 × 10–5, λ s = 1.6). These and other novel regions, including chromosome 14q12–q21 and chromosome 19p13–19q13, could potentially harbour disease loci but confirmation and fine mapping cannot be pursued effectively using conventional linkage analysis. Instead, more powerful linkage disequilibrium-based and haplotype mapping approaches must be used; such data is already emerging for several type 1 diabetes loci detected initially by linkage.


American Journal of Human Genetics | 2005

Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis

P. David Kelsell; Elizabeth E. Norgett; Harriet Unsworth; Muy-Teck Teh; Thomas Cullup; Charles A. Mein; J. Patricia Dopping-Hepenstal; A. Beverly Dale; Gianluca Tadini; Philip Fleckman; G. Karen Stephens; P. Virginia Sybert; Susan B. Mallory; V. Bernard North; R. David Witt; Eli Sprecher; Aileen Taylor; Andrew Ilchyshyn; T. Cameron Kennedy; Helen Goodyear; Celia Moss; David Paige; I. John Harper; D. Bryan Young; M. Irene Leigh; A.J. Robin Eady; A. Edel O’Toole

Harlequin ichthyosis (HI) is the most severe and frequently lethal form of recessive congenital ichthyosis. Although defects in lipid transport, protein phosphatase activity, and differentiation have been described, the genetic basis underlying the clinical and cellular phenotypes of HI has yet to be determined. By use of single-nucleotide-polymorphism chip technology and homozygosity mapping, a common region of homozygosity was observed in five patients with HI in the chromosomal region 2q35. Sequencing of the ABCA12 gene, which maps within the minimal region defined by homozygosity mapping, revealed disease-associated mutations, including large intragenic deletions and frameshift deletions in 11 of the 12 screened individuals with HI. Since HI epidermis displays abnormal lamellar granule formation, ABCA12 may play a critical role in the formation of lamellar granules and the discharge of lipids into the intercellular spaces, which would explain the epidermal barrier defect seen in this disorder. This finding paves the way for early prenatal diagnosis. In addition, functional studies of ABCA12 will lead to a better understanding of epidermal differentiation and barrier formation.


PLOS Genetics | 2011

Identification of Type 1 Diabetes–Associated DNA Methylation Variable Positions That Precede Disease Diagnosis

Vardhman K. Rakyan; Huriya Beyan; Thomas A. Down; Mohammed I. Hawa; Siarhei Maslau; Deeqo Aden; Antoine Daunay; Florence Busato; Charles A. Mein; Burkhard J. Manfras; Kerith-Rae M. Dias; Christopher G. Bell; Jörg Tost; Bernhard O. Boehm; Stephan Beck; R. David Leslie

Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease.


PLOS ONE | 2008

Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia

Amanda Dixon-McIver; Phil East; Charles A. Mein; Jean-Baptiste Cazier; Gael Molloy; Tracy Chaplin; T. Andrew Lister; Bryan D. Young; Silvana Debernardi

Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment

Anna K. Coussens; Robert J. Wilkinson; Yasmeen Hanifa; Vladyslav Nikolayevskyy; Paul T. Elkington; Kamrul Islam; Peter Timms; Timothy R Venton; Graham Bothamley; Geoffrey E. Packe; Mathina Darmalingam; Robert N. Davidson; Heather Milburn; Lucy V. Baker; Richard D. Barker; Charles A. Mein; Leena Bhaw-Rosun; Rosamond Nuamah; Douglas B. Young; Francis Drobniewski; Chris Griffiths; Adrian R. Martineau

Calcidiol, the major circulating metabolite of vitamin D, supports induction of pleiotropic antimicrobial responses in vitro. Vitamin D supplementation elevates circulating calcidiol concentrations, and thus has a potential role in the prevention and treatment of infection. The immunomodulatory effects of administering vitamin D to humans with an infectious disease have not previously been reported. To characterize these effects, we conducted a detailed longitudinal study of circulating and antigen-stimulated immune responses in ninety-five patients receiving antimicrobial therapy for pulmonary tuberculosis who were randomized to receive adjunctive high-dose vitamin D or placebo in a clinical trial, and who fulfilled criteria for per-protocol analysis. Vitamin D supplementation accelerated sputum smear conversion and enhanced treatment-induced resolution of lymphopaenia, monocytosis, hypercytokinaemia, and hyperchemokinaemia. Administration of vitamin D also suppressed antigen-stimulated proinflammatory cytokine responses, but attenuated the suppressive effect of antimicrobial therapy on antigen-stimulated secretion of IL-4, CC chemokine ligand 5, and IFN-α. We demonstrate a previously unappreciated role for vitamin D supplementation in accelerating resolution of inflammatory responses during tuberculosis treatment. Our findings suggest a potential role for adjunctive vitamin D supplementation in the treatment of pulmonary infections to accelerate resolution of inflammatory responses associated with increased risk of mortality.


American Journal of Human Genetics | 2003

Genetic Interaction of BBS1 Mutations with Alleles at Other BBS Loci Can Result in Non-Mendelian Bardet-Biedl Syndrome

Philip L. Beales; Jose L. Badano; Alison Ross; Stephen J. Ansley; Bethan E. Hoskins; Brigitta Kirsten; Charles A. Mein; Philippe Froguel; Peter J. Scambler; Richard Alan Lewis; James R. Lupski; Nicholas Katsanis

Bardet-Biedl syndrome is a genetically and clinically heterogeneous disorder caused by mutations in at least seven loci (BBS1-7), five of which are cloned (BBS1, BBS2, BBS4, BBS6, and BBS7). Genetic and mutational analyses have indicated that, in some families, a combination of three mutant alleles at two loci (triallelic inheritance) is necessary for pathogenesis. To date, four of the five known BBS loci have been implicated in this mode of oligogenic disease transmission. We present a comprehensive analysis of the spectrum, distribution, and involvement in non-Mendelian trait transmission of mutant alleles in BBS1, the most common BBS locus. Analyses of 259 independent families segregating a BBS phenotype indicate that BBS1 participates in complex inheritance and that, in different families, mutations in BBS1 can interact genetically with mutations at each of the other known BBS genes, as well as at unknown loci, to cause the phenotype. Consistent with this model, we identified homozygous M390R alleles, the most frequent BBS1 mutation, in asymptomatic individuals in two families. Moreover, our statistical analyses indicate that the prevalence of the M390R allele in the general population is consistent with an oligogenic rather than a recessive model of disease transmission. The distribution of BBS oligogenic alleles also indicates that all BBS loci might interact genetically with each other, but some genes, especially BBS2 and BBS6, are more likely to participate in triallelic inheritance, suggesting a variable ability of the BBS proteins to interact genetically with each other.


Cell Death & Differentiation | 2008

Yes-associated protein (YAP) functions as a tumor suppressor in breast

Ming Yuan; V Tomlinson; Romain Lara; Deborah L Holliday; Claude Chelala; Tomohiko Harada; Rathi Gangeswaran; C Manson-Bishop; Paul J. Smith; S A Danovi; Olivier E. Pardo; Tim Crook; Charles A. Mein; Nicholas R. Lemoine; Louise Jones; S Basu

Yes-associated protein (YAP) has been shown to positively regulate p53 family members and to be negatively regulated by the AKT proto-oncogene product in promoting apoptosis. On the basis of this function and its location at 11q22.2, a site of frequent loss of heterozygosity (LOH) in breast cancer, we investigated whether YAP is a tumor suppressor in breast. Examination of tumors by immunohistochemistry demonstrated significant loss of YAP protein. LOH analysis revealed that protein loss correlates with specific deletion of the YAP gene locus. Functionally, short hairpin RNA knockdown of YAP in breast cell lines suppressed anoikis, increased migration and invasiveness, inhibited the response to taxol and enhanced tumor growth in nude mice. This is the first report indicating YAP as a tumor suppressor, revealing its decreased expression in breast cancer as well as demonstrating the functional implications of YAP loss in several aspects of cancer signaling.

Collaboration


Dive into the Charles A. Mein's collaboration.

Top Co-Authors

Avatar

Patricia B. Munroe

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Caulfield

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Kelsell

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Karen A. Hunt

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Adrian R. Martineau

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Chris Griffiths

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Eva Wozniak

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge