Charles Ansong
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles Ansong.
Briefings in Functional Genomics and Proteomics | 2008
Charles Ansong; Samuel O. Purvine; Joshua N. Adkins; Mary S. Lipton; Richard D. Smith
While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient for elucidating biological function. Genome annotation--the process of identifying genes and assigning function to each gene in a genome sequence--provides the means to elucidate biological function from sequence. Current state-of-the-art high-throughput genome annotation uses a combination of comparative (sequence similarity data) and non-comparative (ab initio gene prediction algorithms) methods to identify protein-coding genes in genome sequences. Because approaches used to validate the presence of predicted protein-coding genes are typically based on expressed RNA sequences, they cannot independently and unequivocally determine whether a predicted protein-coding gene is translated into a protein. With the ability to directly measure peptides arising from expressed proteins, high-throughput liquid chromatography-tandem mass spectrometry-based proteomics approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which high-throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and suggest that it could be efficiently applied during the gene calling process so that the improvements are propagated through the subsequent functional annotation process.
PLOS ONE | 2009
Charles Ansong; Hyunjin Yoon; Steffen Porwollik; Heather M. Mottaz-Brewer; Navdeep Jaitly; Joshua N. Adkins; Michael McClelland; Fred Heffron; Richard D. Smith
Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella.
Bioinformatics | 2009
Yuliya V. Karpievitch; Jeffrey R. Stanley; Thomas Taverner; Jianhua Huang; Joshua N. Adkins; Charles Ansong; Fred Heffron; Thomas O. Metz; Wei Jun Qian; Hyunjin Yoon; Richard D. Smith; Alan R. Dabney
MOTIVATION Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. RESULTS We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. AVAILABILITY The software has been made available in the open-source proteomics platform DAnTE (http://omics.pnl.gov/software/).
Mbio | 2011
Alan Aderem; Joshua N. Adkins; Charles Ansong; James E. Galagan; Shari M. Kaiser; Marcus J. Korth; G. L. Law; Jason E. McDermott; Sean Proll; Carrie M. Rosenberger; Gary K. Schoolnik; Michael G. Katze
ABSTRACT The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Charles Ansong; Si Wu; Da Meng; Xiaowen Liu; Heather M. Brewer; Brooke L. Deatherage Kaiser; Ernesto S. Nakayasu; John R. Cort; Pavel A. Pevzner; Richard D. Smith; Fred Heffron; Joshua N. Adkins; Ljiljana Paša-Tolić
Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra–high-pressure liquid chromatography mass spectrometry to investigate the comprehensive “intact” proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.
Journal of Proteome Research | 2008
Charles Ansong; Hyunjin Yoon; Angela D. Norbeck; Jean K. Gustin; Jason E. McDermott; Heather M. Mottaz; Joanne Rue; Joshua N. Adkins; Fred Heffron; Richard D. Smith
Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serotype Typhi ( S. typhi). S. typhi infection is a complex process that involves numerous bacterially encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study, we used a liquid chromatography-mass spectrometry (LC-MS)-based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large-scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins. In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions ( Adkins, J. N. et al. Mol. Cell. Proteomics 2006, 5, 1450-1461 ). Comparative proteomics analysis of S. typhi strain Ty2 and S. typhimurium strain LT2 revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that are thought to mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and gene products of t0142, t1108, t1109, t1476, and t1602. The differential expression of T1108, T1476, and HlyE was confirmed by Western blot analysis. When our observations are taken together with the current literature, they suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity.
Infection and Immunity | 2011
Hyunjin Yoon; Charles Ansong; Joshua N. Adkins; Fred Heffron
ABSTRACT Salmonella enterica serovar Typhimurium, an intracellular pathogen and leading cause of food-borne illness, encodes a plethora of virulence effectors. Salmonella virulence factors are translocated into host cells and manipulate host cellular activities, providing a more hospitable environment for bacterial proliferation. In this study, we report a new set of virulence factors that is translocated into the host cytoplasm via bacterial outer membrane vesicles (OMV). PagK (or PagK1), PagJ, and STM2585A (or PagK2) are small proteins composed of ∼70 amino acids and have high sequence homology to each other (>85% identity). Salmonella lacking all three homologues was attenuated for virulence in a mouse infection model, suggesting at least partial functional redundancy among the homologues. While each homologue was translocated into the macrophage cytoplasm, their translocation was independent of all three Salmonella gene-encoded type III secretion systems (T3SSs)–Salmonella pathogenicity island 1 (SPI-1) T3SS, SPI-2 T3SS, and the flagellar system. Selected methods, including direct microscopy, demonstrated that the PagK-homologous proteins were secreted through OMV, which were enriched with lipopolysaccharide (LPS) and outer membrane proteins. Vesicles produced by intracellular bacteria also contained lysosome-associated membrane protein 1 (LAMP1), suggesting the possibility of OMV convergence with host cellular components during intracellular trafficking. This study identified novel Salmonella virulence factors secreted via OMV and demonstrated that OMV can function as a vehicle to transfer virulence determinants to the cytoplasm of the infected host cell.
Chemistry & Biology | 2013
Charles Ansong; Corrie Ortega; Samuel H. Payne; Daniel H. Haft; Lacie M. Chauvigné-Hines; Michael P. Lewis; Anja R. Ollodart; Samuel O. Purvine; Anil K. Shukla; Suereta Fortuin; Richard D. Smith; Joshua N. Adkins; Christoph Grundner; Aaron T. Wright
Computational prediction of protein function is frequently error-prone and incomplete. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins, severely limiting our understanding of Mtb pathogenicity. Here, we utilize a high-throughput quantitative activity-based protein profiling (ABPP) platform to probe, annotate, and validate ATP-binding proteins in Mtb. We experimentally validate prior in silico predictions of >240 proteins and identify 72 hypothetical proteins as ATP binders. ATP interacts with proteins with diverse and unrelated sequences, providing an expanded view of adenosine nucleotide binding in Mtb. Several hypothetical ATP binders are essential or taxonomically limited, suggesting specialized functions in mycobacterial physiology and pathogenicity.
PLOS Genetics | 2014
Wilfried Jonkers; Abigail C. Leeder; Charles Ansong; Yuexi Wang; Feng Yang; Trevor L. Starr; David G. Camp; Richard D. Smith; N. Louise Glass
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication.
Molecular BioSystems | 2013
Young Mo Kim; Brian J. Schmidt; Afshan S. Kidwai; Marcus B. Jones; Brooke L. Deatherage Kaiser; Heather M. Brewer; Hugh D. Mitchell; Bernhard O. Palsson; Jason E. McDermott; Fred Heffron; Richard D. Smith; Scott N. Peterson; Charles Ansong; Daniel R. Hyduke; Thomas O. Metz; Joshua N. Adkins
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome-scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome-scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake.