Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred Heffron is active.

Publication


Featured researches published by Fred Heffron.


Cell | 1979

DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition of Tn3

Fred Heffron; Brian J. McCarthy; Hisako Ohtsubo; Eiichi Ohtsubo

The complete nucleotide sequence of the transposon Tn3 and of 20 mutations which affect its transposition are reported. The mutations, generated in vitro by random insertion of synthetic restriction sites, proved to contain small duplications or deletions immediately adjacent to the new restriction site. By determining the phenotype and DNA sequence of these mutations we were able to generate an overlapping phenotypic and nucleotide map. This 4957 bp transposon encodes three polypeptides which account for all but 350 bp of its total coding capacity. These proteins are the transposase, a high molecular weight polypeptide (1015 amino acids) encoded by the tnpA gene; the Tn3-specific repressor, a low molecular weight polypeptide (185 amino acids) encoded by the tnpR gene; and the 286 amino acid beta-lactamase. The 38 bp inverted repeats flanking Tn3 appear to be absolutely required in cis for Tn3 to transpose. Genetic data suggest that Tn3 contains a third site (Gill et al., 1978), designated IRS (internal resolution site), whose absence results in the insertion of two complete copies of Tn3 as direct repeats into the recipient DNA. We suggest that these direct repeats of complete copies of Tn3 are intermediates in transposition, and that the IRS site is required for recombination and subsequent segregation of the direct repeats to leave a single copy of Tn3 (Gill et al., 1978). A 23 nucleotide sequence within the amino terminus of the transposase which shares strong sequence homology with the inverted repeat may be the internal resolution site.


Molecular Microbiology | 1999

Salmonella SirA is a global regulator of genes mediating enteropathogenesis.

Brian M. M. Ahmer; Jeroen van Reeuwijk; Patricia R. Watson; Tim S. Wallis; Fred Heffron

SirA of Salmonella typhimurium is known to regulate the hilA and prgH genes within Salmonella pathogenicity island 1 (SPI1). To identify more members of the SirA regulon, we screened 10 000 random lacZY fusions (chromosomal MudJ insertions) for regulation by SirA and identified 10 positively regulated fusions. Three fusions were within the SPI1 genes hilA (an SPI1 transcriptional regulator), spaS (a component of the SPI1 type III export apparatus) and sipB (a substrate of the SPI1 export apparatus). Two fusions were within the sopB gene (also known as sigD). sopB is located within SPI5, but encodes a protein that is exported via the SPI1 export apparatus. In addition, five fusions were within genes of unknown function that are located in SPI4. As spaS and sipB were likely to be hilA dependent, we tested all of the fusions (except hilA) for hilA dependence. Surprisingly, we found that all of the fusions require hilA for expression and that plasmid‐encoded SirA cannot bypass this requirement. Therefore, SirA regulates hilA, the product of which regulates genes within SPI1, SPI4 and SPI5. Both sirA and hilA mutants are dramatically attenuated in a bovine model of gastroenteritis, but have little or no effect in the mouse model of typhoid fever. This study establishes the SirA/HilA regulatory cascade as the primary regulon controlling enteropathogenic virulence functions in S. typhimurium. Because S. typhimurium causes gastroenteritis in both cattle and humans, we believe that this information may be directly applicable to the human disease.


Molecular Microbiology | 1995

The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence

Igor Stojijkovic; Vivian Hwa; Luc Martin; Peadar O'Gaora; Xavier Nassif; Fred Heffron; Magdalene So

The Neisseris meningitidis haemoglobin receptor gene, hmbR, was cloned by complementation in a porphyrin‐requiring Escherichia coli mutant. hmbR encodes an 89.5 kDa outer membrane protein which shares amino acid homology with the TonB‐dependent receptors of Gram‐negative bacteria. HmbR had the highest similarity to Neisseria transferrin and lactoferrin receptors. The utilization of haemoglobin as an iron source required internalization of the haemin moiety by the cell. The mechanism of haemin internalization via the haemoglobin receptor was TonB‐dependent in E. coli. A N. meningitidis hmbR mutant was unable to use haemoglobin but could still use haemin as a sole iron source. The existence of a second N. meningitidis receptor gene, specific for haemin, was shown by the isolation of cosmids which did not hybridize with the hmbR probe, but which were able to complement an E. coli hemA aroB mutant on haemin‐supplemented plates. The N. meningitidis hmbR mutant was attenuated in an infant rat model for meningococcal infection, indicating that haemoglobin utilization is important for N. meningitidis virulence.


Molecular Microbiology | 2002

Salmonella SsrB activates a global regulon of horizontally acquired genes

Micah J. Worley; Katherine H. L. Ching; Fred Heffron

Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. This ability requires an S. enterica specific locus termed Salmonella pathogenicity island 2 (SPI‐2). SPI‐2 encodes a type III secretion system that injects effectors encoded within the island into host cell cytosol to promote virulence. SsrAB is a two‐component regulator encoded within SPI‐2 that was assumed to activate SPI‐2 genes exclusively. Here, it is shown that SsrB in fact activates a global regulon. At least 10 genes outside SPI‐2 are SsrB regulated within epithelial and macrophage cells. Nine of these 10 SsrB‐regulated genes outside SPI‐2 reside within previously undescribed regions of the Salmonella genome. Most share no sequence homology with current database entries. However, one is remarkably homologous to human glucosyl ceramidase, an enzyme involved in the ceramide signalling pathway. The SsrB regulon is modulated by the two‐component regulatory systems PhoP/PhoQ and OmpR/EnvZ, and is upregulated in the intracellular microenvironment.


Molecular Microbiology | 1993

Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages

Nancy A. Buchmeier; Craig J. Lipps; Magdalene So; Fred Heffron

Mutations in the genes recA and recBC were constructed in the virulent Salmonella typhimurium strain 14028s. Both the recA and recBC mutants were attenuated in mice. The mutants were also sensitive to killing by macrophages in vitro. The recombination mutants were no longer macrophage sensitive in a variant line of J774 macrophage‐like cells that fail to generate superoxide. This suggests that repair of DNA damage by Salmonella is necessary for full virulence in vivo and that the oxidative burst of phagocytes is one source of such DNA damage.


PLOS Pathogens | 2009

Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems

Ram Samudrala; Fred Heffron; Jason E. McDermott

The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates—effector proteins—are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.


Gene | 1996

Identification of a new iron regulated locus of Salmonella typhi

Andreas J. Bäumler; Renée M. Tsolis; Adrianus W.M. van der Velden; Igor Stojiljkovic; Suzana Anic; Fred Heffron

In order to identify genes belonging to the Fur regulon of Salmonella typhi which are absent from Escherichia coli K-12, a plasmid gene bank consisting of 4000 independent clones was screened for Fur regulated promoters using the Fur titration assay (FURTA). DNA probes generated from FURTA positive plasmids were then used for hybridization with chromosomal DNA from S. typhi, Salmonella typhimurium and E. coli. Using these techniques we identified an iron regulated locus present in S. typhi and S. typhimurium but not in E. coli. Further cloning and nucleotide sequence analysis identified two open reading frames, termed iroBC, organized in a typical operon structure. The genes iroBC were located at 4 and 57 centisomes on the physical maps of Salmonella typhi and S. typhimurium, respectively. This region of the S. typhimurium chromosome contains a large DNA loop which is absent from the corresponding area of the E. coli chromosome. Finally, we developed a new method for generation of single copy transcriptional fusions. A suicide vector was constructed, which allows for the generation of chromosomal fusions to the promoterless E. coli lacZYA genes. By integration of this construct at the iro locus we could establish iron responsive expression of iroBC.


Infection and Immunity | 2005

sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence

Duncan A. Parsons; Fred Heffron

ABSTRACT Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host


Journal of Biological Chemistry | 2006

Proteomic Analysis of Salmonella enterica Serovar Typhimurium Isolated from RAW 264.7 Macrophages IDENTIFICATION OF A NOVEL PROTEIN THAT CONTRIBUTES TO THE REPLICATION OF SEROVAR TYPHIMURIUM INSIDE MACROPHAGES

Liang Shi; Joshua N. Adkins; James R. Coleman; Athena A. Schepmoes; Alice Dohnkova; Heather M. Mottaz; Angela D. Norbeck; Samuel O. Purvine; Nathan P. Manes; Heather S. Smallwood; Haixing Wang; John Forbes; Philippe Gros; Sergio Uzzau; Karin D. Rodland; Fred Heffron; Richard D. Smith; Thomas C. Squier

To evade host resistance mechanisms, Salmonella enterica serovar Typhimurium (STM), a facultative intracellular pathogen, must alter its proteome following macrophage infection. To identify new colonization and virulence factors that mediate STM pathogenesis, we have isolated STM cells from RAW 264.7 macrophages at various time points following infection and used a liquid chromatography-mass spectrometry-based proteomic approach to detect the changes in STM protein abundance. Because host resistance to STM infection is strongly modulated by the expression of a functional host-resistant regulator, i.e. natural resistance-associated macrophage protein 1 (Nramp1, also called Slc11a1), we have also examined the effects of Nramp1 activity on the changes of STM protein abundances. A total of 315 STM proteins have been identified from isolated STM cells, which are largely housekeeping proteins whose abundances remain relatively constant during the time course of infection. However, 39 STM proteins are strongly induced after infection, suggesting their involvement in modulating colonization and infection. Of the 39 induced proteins, 6 proteins are specifically modulated by Nramp1 activity, including STM3117, as well as STM3118-3119 whose time-dependent abundance changes were confirmed using Western blot analysis. Deletion of the gene encoding STM3117 resulted in a dramatic reduction in the ability of STM to colonize wild-type RAW 264.7 macrophages, demonstrating a critical involvement of STM3117 in promoting the replication of STM inside macrophages. The predicted function common for STM3117-3119 is biosynthesis and modification of the peptidoglycan layer of the STM cell wall.


PLOS Pathogens | 2007

Analysis of Cells Targeted by Salmonella Type III Secretion In Vivo

Kaoru Geddes; Frank Cruz; Fred Heffron

The type III secretion systems (TTSS) encoded in Salmonella pathogenicity island-1 and -2 (SPI-1 and -2) are virulence factors required for specific phases of Salmonella infection in animal hosts. However, the host cell types targeted by the TTSS have not been determined. To investigate this, we have constructed translational fusions between the ß-lactamase reporter and a broad array of TTSS effectors secreted via SPI-1, SPI-2, or both. Secretion of the fusion protein to a host cell was determined by cleavage of a specific fluorescent substrate. In cultured cells, secretion of all six effectors could be observed. However, two to four days following i.p. infection of mice, only effectors secreted by SPI-2 were detected in spleen cells. The cells targeted were identified via staining with nine different cell surface markers followed by FACS analysis as well as by conventional cytological methods. The targeted cells include B and T lymphocytes, neutrophils, monocytes, and dendritic cells, but not mature macrophages. To further investigate replication in these various cell types, Salmonella derivatives were constructed that express a red fluorescent protein. Bacteria could be seen in each of the cell types above; however, most viable bacteria were present in neutrophils. We find that Salmonella is capable of targeting most phagocytic and non-phagocytic cells in the spleen but has a surprisingly high preference for neutrophils. These findings suggest that Salmonella specifically target splenic neutrophils presumably to attenuate their microbicidal functions, thereby promoting intracellular survival and replication in the mouse.

Collaboration


Dive into the Fred Heffron's collaboration.

Top Co-Authors

Avatar

Joshua N. Adkins

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Ansong

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jason E. McDermott

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela D. Norbeck

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge