Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather M. Brewer is active.

Publication


Featured researches published by Heather M. Brewer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions

Charles Ansong; Si Wu; Da Meng; Xiaowen Liu; Heather M. Brewer; Brooke L. Deatherage Kaiser; Ernesto S. Nakayasu; John R. Cort; Pavel A. Pevzner; Richard D. Smith; Fred Heffron; Joshua N. Adkins; Ljiljana Paša-Tolić

Characterization of the mature protein complement in cells is crucial for a better understanding of cellular processes on a systems-wide scale. Toward this end, we used single-dimension ultra–high-pressure liquid chromatography mass spectrometry to investigate the comprehensive “intact” proteome of the Gram-negative bacterial pathogen Salmonella Typhimurium. Top-down proteomics analysis revealed 563 unique proteins including 1,665 proteoforms generated by posttranslational modifications (PTMs), representing the largest microbial top-down dataset reported to date. We confirmed many previously recognized aspects of Salmonella biology and bacterial PTMs, and our analysis also revealed several additional biological insights. Of particular interest was differential utilization of the protein S-thiolation forms S-glutathionylation and S-cysteinylation in response to infection-like conditions versus basal conditions. This finding of a S-glutathionylation-to-S-cysteinylation switch in a condition-specific manner was corroborated by bottom-up proteomics data and further by changes in corresponding biosynthetic pathways under infection-like conditions and during actual infection of host cells. This differential utilization highlights underlying metabolic mechanisms that modulate changes in cellular signaling, and represents a report of S-cysteinylation in Gram-negative bacteria. Additionally, the functional relevance of these PTMs was supported by protein structure and gene deletion analyses. The demonstrated utility of our simple proteome-wide intact protein level measurement strategy for gaining biological insight should promote broader adoption and applications of top-down proteomics approaches.


Infection and Immunity | 2011

Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

George S. Niemann; Roslyn N. Brown; Jean K. Gustin; Afke Stufkens; Afshan S. Shaikh-Kidwai; Jie Li; Jason E. McDermott; Heather M. Brewer; Athena A. Schepmoes; Richard D. Smith; Joshua N. Adkins; Fred Heffron

ABSTRACT Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (ΔssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ΔssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA′ reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

Alyse K. Hawley; Heather M. Brewer; Angela D. Norbeck; Ljiljana Paša-Tolić; Steven J. Hallam

Significance Oxygen is an important organizing principle in marine ecosystems. As oxygen levels decline, energy is increasingly diverted away from higher trophic levels into microbial community metabolism causing changes in carbon and nutrient cycling. Here we use metagenomic and metaproteomic methods to chart in situ metabolic networks linking key microbial players driving carbon and nutrient cycling in a seasonally stratified fjord, Saanich Inlet, a model ecosystem for studying microbial responses to changing levels of water column oxygen deficiency. Based on this evidence, we develop a conceptual model that describes coupling of chemotrophic energy production with dark carbon fixation along defined redox gradients with implications for primary production and possibly carbon sedimentation in expanding marine oxygen minimum zones. Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.


Journal of Proteome Research | 2012

Label-Free Quantitative LC–MS Proteomics of Alzheimer’s Disease and Normally Aged Human Brains

Victor P. Andreev; Vladislav A. Petyuk; Heather M. Brewer; Yuliya V. Karpievitch; Fang Xie; Jennifer Clarke; David G. Camp; Richard D. Smith; Andrew P. Lieberman; Roger L. Albin; Zafar Nawaz; Jimmy El Hokayem; Amanda J. Myers

Quantitative proteomics analysis of cortical samples of 10 Alzheimers disease (AD) brains versus 10 normally aged brains was performed by following the accurate mass and time tag (AMT) approach with the high resolution LTQ Orbitrap mass spectrometer. More than 1400 proteins were identified and quantitated. A conservative approach of selecting only the consensus results of four normalization methods was suggested and used. A total of 197 proteins were shown to be significantly differentially abundant (p-values <0.05, corrected for multiplicity of testing) in AD versus control brain samples. Thirty-seven of these proteins were reported as differentially abundant or modified in AD in previous proteomics and transcriptomics publications. The rest to the best of our knowledge are new. Mapping of the discovered proteins with bioinformatic tools revealed significant enrichment with differentially abundant proteins of pathways and processes known to be important in AD, including signal transduction, regulation of protein phosphorylation, immune response, cytoskeleton organization, lipid metabolism, energy production, and cell death.


Frontiers in Microbiology | 2011

Global Proteomic Analysis of Two Tick-Borne Emerging Zoonotic Agents: Anaplasma Phagocytophilum and Ehrlichia Chaffeensis

Mingqun Lin; Takane Kikuchi; Heather M. Brewer; Angela D. Norbeck; Yasuko Rikihisa

Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.


Molecular & Cellular Proteomics | 2013

Reduced Insulin/Insulin-like Growth Factor-1 Signaling and Dietary Restriction Inhibit Translation but Preserve Muscle Mass in Caenorhabditis elegans

Geert Depuydt; Fang Xie; Vladislav A. Petyuk; Nilesh Shanmugam; Arne Smolders; Ineke Dhondt; Heather M. Brewer; David G. Camp; Richard D. Smith; Bart P. Braeckman

Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.


ACS Chemical Biology | 2014

Automated Genome Mining of Ribosomal Peptide Natural Products

Hosein Mohimani; Roland D. Kersten; Wei-Ting Liu; Mingxun Wang; Samuel O. Purvine; Si Wu; Heather M. Brewer; Ljiljana Paša-Tolić; Nuno Bandeira; Bradley S. Moore; Pavel A. Pevzner; Pieter C. Dorrestein

Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity.1 In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic data sets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs, and apply it to lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connecting multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 to reflect that it is a natural product that was discovered by mass spectrometry based genome mining using algorithmic tools rather than manual inspection of mass spectrometry data and genetic information. The presented tool is available at cyclo.ucsd.edu.


Journal of Proteome Research | 2014

LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

Geert Depuydt; Fang Xie; Vladislav A. Petyuk; Arne Smolders; Heather M. Brewer; David G. Camp; Richard D. Smith; Bart P. Braeckman

The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.


Molecular BioSystems | 2013

Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes

Young Mo Kim; Brian J. Schmidt; Afshan S. Kidwai; Marcus B. Jones; Brooke L. Deatherage Kaiser; Heather M. Brewer; Hugh D. Mitchell; Bernhard O. Palsson; Jason E. McDermott; Fred Heffron; Richard D. Smith; Scott N. Peterson; Charles Ansong; Daniel R. Hyduke; Thomas O. Metz; Joshua N. Adkins

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome-scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome-scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake.


PLOS ONE | 2012

Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

Alexandra C. Schrimpe-Rutledge; Marcus B. Jones; Sadhana Chauhan; Samuel O. Purvine; James A. Sanford; Matthew E. Monroe; Heather M. Brewer; Samuel H. Payne; Charles Ansong; Bryan Frank; Richard D. Smith; Scott N. Peterson; Vladimir L. Motin; Joshua N. Adkins

Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strains predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.

Collaboration


Dive into the Heather M. Brewer's collaboration.

Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joshua N. Adkins

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ljiljana Paša-Tolić

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Ansong

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Samuel O. Purvine

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Angela D. Norbeck

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vladislav A. Petyuk

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason E. McDermott

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marcus B. Jones

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge