Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte J. Stagg is active.

Publication


Featured researches published by Charlotte J. Stagg.


The Neuroscientist | 2011

Physiological Basis of Transcranial Direct Current Stimulation

Charlotte J. Stagg; Michael A. Nitsche

Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.


Clinical Neurophysiology | 2014

Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)

Jean Pascal Lefaucheur; Nathalie André-Obadia; Andrea Antal; Samar S. Ayache; Chris Baeken; David H. Benninger; Roberto Cantello; Massimo Cincotta; Mamede de Carvalho; Dirk De Ridder; Hervé Devanne; Vincenzo Di Lazzaro; Saša R. Filipović; Friedhelm C. Hummel; Satu K. Jääskeläinen; Vasilios K. Kimiskidis; Giacomo Koch; Berthold Langguth; Thomas Nyffeler; Antonio Oliviero; Frank Padberg; Emmanuel Poulet; Simone Rossi; Paolo Maria Rossini; John C. Rothwell; Carlos Schönfeldt-Lecuona; Hartwig R. Siebner; Christina W. Slotema; Charlotte J. Stagg; Josep Valls-Solé

A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.


The Journal of Neuroscience | 2009

Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation

Charlotte J. Stagg; J G Best; Mary C. Stephenson; Jacinta O'Shea; M Wylezinska; Z T Kincses; Peter G. Morris; Paul M. Matthews; Heidi Johansen-Berg

Transcranial direct current stimulation (tDCS) modulates cortical excitability and is being used for human studies more frequently. Here we probe the underlying neuronal mechanisms by measuring polarity-specific changes in neurotransmitter concentrations using magnetic resonance spectroscopy (MRS). MRS provides evidence that excitatory (anodal) tDCS causes locally reduced GABA while inhibitory (cathodal) stimulation causes reduced glutamatergic neuronal activity with a highly correlated reduction in GABA, presumably due to the close biochemical relationship between the two neurotransmitters.


Current Biology | 2011

The role of GABA in human motor learning.

Charlotte J. Stagg; Velicia Bachtiar; Heidi Johansen-Berg

Summary GABA modification plays an important role in motor cortical plasticity [1–4]. We therefore hypothesized that interindividual variation in the responsiveness of the GABA system to modification influences learning capacity in healthy adults. We assessed GABA responsiveness by transcranial direct current stimulation (tDCS), an intervention known to decrease GABA [5, 6]. The magnitude of M1 GABA decrease induced by anodal tDCS correlated positively with both the degree of motor learning and the degree of fMRI signal change within the left M1 during learning. This study therefore suggests that the responsiveness of the GABAergic system to modification may be relevant to short-term motor learning behavior and learning-related brain activity.


Neuropsychologia | 2011

Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning.

Charlotte J. Stagg; G Jayaram; D Pastor; Z T Kincses; Paul M. Matthews; Heidi Johansen-Berg

Research highlights ► Transcranial direct current stimulation (tDCS) modulates explicit sequence learning. ► Anodal tDCS applied during the task speeds motor learning. ► Anodal tDCS applied before the task slows motor learning. ► Cathodal tDCS slows the rate of learning in both cases.


Clinical Neurophysiology | 2016

A technical guide to tDCS, and related non-invasive brain stimulation tools.

Adam J. Woods; Andrea Antal; Paulo S. Boggio; Andre R. Brunoni; Pablo Celnik; Leonardo G. Cohen; Felipe Fregni; Christoph Herrmann; Emily S. Kappenman; Helena Knotkova; David Liebetanz; Carlo Miniussi; Pedro Cavaleiro Miranda; Walter Paulus; D. Reato; Charlotte J. Stagg; Nicole Wenderoth; Michael A. Nitsche

Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain.


Journal of Neurophysiology | 2009

Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy.

Charlotte J. Stagg; M Wylezinska; Paul M. Matthews; Heidi Johansen-Berg; Peter Jezzard; John C. Rothwell; Sven Bestmann

Continuous theta burst stimulation (cTBS) is a novel transcranial stimulation technique that causes significant inhibition of synaptic transmission for ≤1 h when applied over the primary motor cortex (M1) in humans. Here we use magnetic resonance spectroscopy to define mechanisms mediating this inhibition by noninvasively measuring local changes in the cortical concentrations of γ-aminobutyric acid (GABA) and glutamate/glutamine (Glx). cTBS to the left M1 led to an increase in GABA compared with stimulation at a control site without significant change in Glx. This direct evidence for increased GABAergic interneuronal activity is framed in terms of a new hypothesis regarding mechanisms underlying cTBS.


Brain | 2013

Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype.

Sarosh R. Irani; Charlotte J. Stagg; Jonathan M. Schott; Clive R. Rosenthal; Susanne A. Schneider; Rosemary Pettingill; P Waters; Adam G. Thomas; Natalie L. Voets; Manuel Jorge Cardoso; David M. Cash; Emily N. Manning; Bethan Lang; Shelagh Smith; Angela Vincent; Michael R. Johnson

Voltage-gated potassium channel complex antibodies, particularly those directed against leucine-rich glioma inactivated 1, are associated with a common form of limbic encephalitis that presents with cognitive impairment and seizures. Faciobrachial dystonic seizures have recently been reported as immunotherapy-responsive, brief, frequent events that often predate the cognitive impairment associated with this limbic encephalitis. However, these observations were made from a retrospective study without serial cognitive assessments. Here, we undertook the first prospective study of faciobrachial dystonic seizures with serial assessments of seizure frequencies, cognition and antibodies in 10 cases identified over 20 months. We hypothesized that (i) faciobrachial dystonic seizures would show a differential response to anti-epileptic drugs and immunotherapy; and that (ii) effective treatment of faciobrachial dystonic seizures would accelerate recovery and prevent the development of cognitive impairment. The 10 cases expand both the known age at onset (28 to 92 years, median 68) and clinical features, with events of longer duration, simultaneously bilateral events, prominent automatisms, sensory aura, and post-ictal fear and speech arrest. Ictal epileptiform electroencephalographic changes were present in three cases. All 10 cases were positive for voltage-gated potassium channel-complex antibodies (346-4515 pM): nine showed specificity for leucine-rich glioma inactivated 1. Seven cases had normal clinical magnetic resonance imaging, and the cerebrospinal fluid examination was unremarkable in all seven tested. Faciobrachial dystonic seizures were controlled more effectively with immunotherapy than anti-epileptic drugs (P = 0.006). Strikingly, in the nine cases who remained anti-epileptic drug refractory for a median of 30 days (range 11-200), the addition of corticosteroids was associated with cessation of faciobrachial dystonic seizures within 1 week in three and within 2 months in six cases. Voltage-gated potassium channel-complex antibodies persisted in the four cases with relapses of faciobrachial dystonic seizures during corticosteroid withdrawal. Time to recovery of baseline function was positively correlated with time to immunotherapy (r = 0.74; P = 0.03) but not time to anti-epileptic drug administration (r = 0.55; P = 0.10). Of 10 cases, the eight cases who received anti-epileptic drugs (n = 3) or no treatment (n = 5) all developed cognitive impairment. By contrast, the two who did not develop cognitive impairment received immunotherapy to treat their faciobrachial dystonic seizures (P = 0.02). In eight cases without clinical magnetic resonance imaging evidence of hippocampal signal change, cross-sectional volumetric magnetic resonance imaging post-recovery, after accounting for age and head size, revealed cases (n = 8) had smaller brain volumes than healthy controls (n = 13) (P < 0.001). In conclusion, faciobrachial dystonic seizures can be prospectively identified as a form of epilepsy with an expanding phenotype. Immunotherapy is associated with excellent control of the frequently anti-epileptic drug refractory seizures, hastens time to recovery, and may prevent the subsequent development of cognitive impairment observed in this study.


The Journal of Physiology | 2011

Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex

Charlotte J. Stagg; Sven Bestmann; Alexandra Oana Constantinescu; L Moreno Moreno; C Allman; R Mekle; Mark W. Woolrich; Jamie Near; Heidi Johansen-Berg; John C. Rothwell

Non‐technical summary  Inter‐individual differences in regional GABA as assessed by magnetic resonance spectroscopy (MRS) relate to behavioural variation in humans. However, it is not clear what the relationship is between MRS measures of the concentration of neurotransmitters in a region and synaptic activity. Transcranial magnetic stimulation (TMS) techniques provide physiological measures of cortical excitation or inhibition. Here, we investigated the relationship between MRS and TMS measures of glutamatergic and GABAergic activity within the same individuals. We demonstrated a relationship between MRS‐assessed glutamate levels and a TMS measure of global cortical excitability, suggesting that MRS measures of glutamate do reflect glutamatergic activity. However, there was no clear relationship between MRS‐assessed GABA levels and TMS measures of synaptic GABAA or GABAB activity. A relationship was found between MRS‐assessed GABA and a TMS protocol with less clearly understood physiological underpinnings. We speculate that this protocol may therefore reflect extrasynaptic GABA tone.


NeuroImage | 2011

Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner.

Karla L. Miller; Charlotte J. Stagg; Gwenaëlle Douaud; Saâd Jbabdi; Stephen M. Smith; Timothy E. J. Behrens; Mark Jenkinson; Steven A. Chance; Margaret M. Esiri; Natalie L. Voets; Ned Jenkinson; Tipu Z. Aziz; Martin Turner; Heidi Johansen-Berg; Jennifer A. McNab

Diffusion imaging of post mortem brains has great potential both as a reference for brain specimens that undergo sectioning, and as a link between in vivo diffusion studies and “gold standard” histology/dissection. While there is a relatively mature literature on post mortem diffusion imaging of animals, human brains have proven more challenging due to their incompatibility with high-performance scanners. This study presents a method for post mortem diffusion imaging of whole, human brains using a clinical 3-Tesla scanner with a 3D segmented EPI spin-echo sequence. Results in eleven brains at 0.94 × 0.94 × 0.94 mm resolution are presented, and in a single brain at 0.73 × 0.73 × 0.73 mm resolution. Region-of-interest analysis of diffusion tensor parameters indicate that these properties are altered compared to in vivo (reduced diffusivity and anisotropy), with significant dependence on post mortem interval (time from death to fixation). Despite these alterations, diffusion tractography of several major tracts is successfully demonstrated at both resolutions. We also report novel findings of cortical anisotropy and partial volume effects.

Collaboration


Dive into the Charlotte J. Stagg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie Near

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge