Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chatdanai Lumdee is active.

Publication


Featured researches published by Chatdanai Lumdee.


ACS Nano | 2012

Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.

Chatdanai Lumdee; Seyfollah Toroghi; Pieter G. Kik

Voltage controlled wavelength tuning of the localized surface plasmon resonance of gold nanoparticles on an aluminum film is demonstrated in single particle microscopy and spectroscopy measurements. Anodization of the Al film after nanoparticle deposition forms an aluminum oxide spacer layer between the gold particles and the Al film, modifying the particle-substrate interaction. Darkfield microscopy reveals ring-shaped scattering images from individual Au nanoparticles, indicative of plasmon resonances with a dipole moment normal to the substrate. Single particle scattering spectra show narrow plasmon resonances that can be tuned from ~580 to ~550 nm as the anodization voltage increases to 12 V. All observed experimental trends could be reproduced in numerical simulations. The presented approach could be used as a general postfabrication resonance optimization step of plasmonic nanoantennas and devices.


Applied Physics Letters | 2015

Heterogeneous plasmonic trimers for enhanced nonlinear optical absorption

Seyfollah Toroghi; Chatdanai Lumdee; Pieter G. Kik

A dramatic enhancement of the thermally induced nonlinear optical response in compositionally heterogeneous plasmonic trimers is reported. It is demonstrated numerically that the nonlinear absorption performance of silver nanoparticle dimers under pulsed illumination can be enhanced by more than two orders of magnitude through the addition of only 0.1 vol. % of gold in the dimer gap. The nonlinear absorption performance of the resulting Ag-Au-Ag trimer exceeds the peak performance of isolated gold nanoparticles by a factor 40. This dramatic effect is enabled by cascaded plasmon resonance, resulting in extreme field concentration in the central nanoparticle of the trimer. The observed localized heat-generation, large optical response, and a predicted response time below 1 ns make these structures promising candidates for use in nonlinear optical limiting and optical switching.


Proceedings of SPIE | 2013

Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement

Seyfollah Toroghi; Chatdanai Lumdee; Pieter G. Kik

Optical field enhancement in coupled plasmonic nanostructures has attracted significant attention because of field enhancement factors that significantly exceed those observed in isolated nanostructures. While previous studies demonstrated the existence of such cascaded field enhancement in coupled nanospheres with identical composition, this effect has not yet been studied in systems containing multiple materials. Here, we investigate the polarization-dependent optical response of multi-material trimer nanostructures composed of Au nanoparticles surrounded by two Ag nanoparticles as a function of nanoparticle size and inter-particle spacing. We observe field enhancement factors that are ten times larger than observed in isolated Au nanoparticles.


Journal of Visualized Experiments | 2016

Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films.

Spencer Novak; Pao-Tai Lin; Cheng Li; Nikolay Borodinov; Zhaohong Han; Corentin Monmeyran; Neil Patel; Qingyang Du; Marcin Malinowski; Sasan Fathpour; Chatdanai Lumdee; Chi Xu; Pieter G. Kik; Weiwei Deng; Juejun Hu; Anuradha M. Agarwal; Igor Luzinov; Kathleen Richardson

Solution-based electrospray film deposition, which is compatible with continuous, roll-to-roll processing, is applied to chalcogenide glasses. Two chalcogenide compositions are demonstrated: Ge23Sb7S70 and As40S60, which have both been studied extensively for planar mid-infrared (mid-IR) microphotonic devices. In this approach, uniform thickness films are fabricated through the use of computer numerical controlled (CNC) motion. Chalcogenide glass (ChG) is written over the substrate by a single nozzle along a serpentine path. Films were subjected to a series of heat treatments between 100 °C and 200 °C under vacuum to drive off residual solvent and densify the films. Based on transmission Fourier transform infrared (FTIR) spectroscopy and surface roughness measurements, both compositions were found to be suitable for the fabrication of planar devices operating in the mid-IR region. Residual solvent removal was found to be much quicker for the As40S60 film as compared to Ge23Sb7S70. Based on the advantages of electrospray, direct printing of a gradient refractive index (GRIN) mid-IR transparent coating is envisioned, given the difference in refractive index of the two compositions in this study.


ACS Applied Materials & Interfaces | 2017

Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

Spencer Novak; Pao Tai Lin; Cheng Li; Chatdanai Lumdee; Juejun Hu; Anuradha M. Agarwal; Pieter G. Kik; Weiwei Deng; Kathleen Richardson

A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge23Sb7S70 and As40S60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.


APL Photonics | 2016

Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

Chatdanai Lumdee; Pieter G. Kik

The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.


Proceedings of SPIE | 2014

Numerical prediction of the effect of nanoscale surface roughness on film-coupled nanoparticle plasmon resonances

Chatdanai Lumdee; Pieter G. Kik

Plasmon resonant metal nanoparticles on substrates have been considered for use in several nanophotonic applications due to the combination of large field enhancement factors, broadband frequency control, ease of fabrication, and structural robustness that they provide. Despite the existence of a large body of work on the dependence of the nanoparticle plasmon resonance on composition and particle-substrate separation, little is known about the role of substrate roughness in these systems. This is in fact an important aspect, since particle-substrate gap sizes for which large resonance shifts are observed are of the same order of typical surface roughness of deposited films. In the present study, the plasmon resonance response of 80 nm diameter gold nanoparticles on a thermally evaporated gold film are numerically calculated based on the measured surface morphology of the gold film. By combining the measured surface data with electromagnetic simulations, it is demonstrated that the plasmon resonance wavelength of single gold nanoparticles is blueshifted on a rough gold surface compared the response on a flat gold film. The anticipated degree of spectral variation of gold nanoparticles on the rough surface is also presented. This study demonstrates that nanoscale surface roughness can become an important source of spectral variation for substrate tuned resonances that use small gap sizes.


Proceedings of SPIE | 2013

Optical Characteristic and Numerical Study of Gold Nanoparticles on Al 2 O 3 coated Gold Film for Tunable Plasmonic Sensing Platforms

Chatdanai Lumdee; Binfeng Yun; Pieter G. Kik

Substrate-based tuning of plasmon resonances on gold nanoparticles (NP) is a versatile method of achieving plasmon resonances at a desired wavelength, and offers reliable nanogap sizes and large field enhancement factors. The reproducibility and relative simplicity of these structures makes them promising candidates for frequency-optimized sensing substrates. The underlying principle in resonance tuning of such a structure is the coupling between a metal nanoparticle and the substrate, which leads to a resonance shift and a polarization dependent scattering response. In this work, we experimentally investigate the optical scattering spectra of isolated 60 nm diameter gold nanoparticles on aluminum oxide (Al2O3) coated gold films with various oxide thicknesses. Dark-field scattering images and scattering spectra of gold particles reveal two distinct resonance modes. The experimental results are compared with numerical simulations, revealing the magnitude and phase relationships between the effective dipoles of the gold particle and the gold substrate. The numerical approach is described in detail, and enables the prediction of the resonance responses of a particle-on-film structure using methods that are available in many available electromagnetics simulation packages. The simulated scattering spectra match the experimentally observed data remarkably well, demonstrating the usefulness of the presented approach to researchers in the field.


ACS Photonics | 2014

Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence

Chatdanai Lumdee; Binfeng Yun; Pieter G. Kik


Journal of Physical Chemistry C | 2013

Wide-Band Spectral Control of Au Nanoparticle Plasmon Resonances on a Thermally and Chemically Robust Sensing Platform

Chatdanai Lumdee; Binfeng Yun; Pieter G. Kik

Collaboration


Dive into the Chatdanai Lumdee's collaboration.

Top Co-Authors

Avatar

Pieter G. Kik

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Seyfollah Toroghi

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anuradha M. Agarwal

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cheng Li

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Juejun Hu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kathleen Richardson

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Spencer Novak

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Weiwei Deng

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Corentin Monmeyran

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge