Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chen Sl is active.

Publication


Featured researches published by Chen Sl.


BMC Genomics | 2010

De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis

Chao Sun; Ying Li; Qiong Wu; Hongmei Luo; Yongzhen Sun; Jingyuan Song; Edmund M.K. Lui; Chen Sl

BackgroundAmerican ginseng (Panax quinquefolius L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway.ResultsIn this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. De novo assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides. Finally, one CYP450 and four UDP-glycosyltransferases were selected as the candidates most likely to be involved in ginsenoside biosynthesis through a methyl jasmonate (MeJA) inducibility experiment and tissue-specific expression pattern analysis based on a real-time PCR assay.ConclusionsWe demonstrated, with the assistance of the MeJA inducibility experiment and tissue-specific expression pattern analysis, that transcriptome analysis based on 454 pyrosequencing is a powerful tool for determining the genes encoding enzymes responsible for the biosynthesis of secondary metabolites in non-model plants. Additionally, the expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community that is interested in the molecular genetics and functional genomics of American ginseng.


Nature Communications | 2012

Genome sequence of the model medicinal mushroom Ganoderma lucidum

Chen Sl; Jiang Xu; Chang Liu; Yingjie Zhu; David R. Nelson; Shiguo Zhou; Chunfang Li; Lizhi Wang; Xu Guo; Yongzhen Sun; Hongmei Luo; Ying Li; Jingyuan Song; Bernard Henrissat; Anthony Levasseur; Jun Qian; Jianqin Li; Xiang Luo; Linchun Shi; Liu He; Li Xiang; Xiaolan Xu; Yunyun Niu; Qiushi Li; Mira V. Han; Haixia Yan; Jin Zhang; Haimei Chen; Aiping Lv; Zhen Wang

Ganoderma lucidum is a widely used medicinal macrofungus in traditional Chinese medicine that creates a diverse set of bioactive compounds. Here we report its 43.3-Mb genome, encoding 16,113 predicted genes, obtained using next-generation sequencing and optical mapping approaches. The sequence analysis reveals an impressive array of genes encoding cytochrome P450s (CYPs), transporters and regulatory proteins that cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all of the sequenced basidiomycetes. In all, 24 physical CYP gene clusters are identified. Moreover, 78 CYP genes are coexpressed with lanosterol synthase, and 16 of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the G. lucidum genome makes this organism a potential model system for the study of secondary metabolic pathways and their regulation in medicinal fungi.


Plant Cell Reports | 2011

454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng

Chen Sl; Hongmei Luo; Ying Li; Yongzhen Sun; Q. Wu; Y. Niu; Jingyuan Song; A. Lv; Yingjie Zhu; Chao Sun; A. Steinmetz; Z. Qian

Panax ginseng C.A. Meyer is one of the most highly valued medicinal plants in the world. To analyze the transcriptome of P. ginseng and discover the genes involved in ginsenoside biosynthesis, cDNAs derived from the total RNA of 11-year-old, wood-grown P. ginseng roots were analyzed by 454 sequencing. A total of 217,529 high quality reads (expressed sequence tags, ESTs), with an average length of 409 bases, were generated from a one-quarter run to yield 31,741 unique sequences. The majority (20,198; 63.6%) of the unique sequences were annotated using BLAST similarity searches. A total of 16,810 and 16,577 unique sequences were assigned to functional classifications and biochemical pathways based on Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes assignment, respectively. Nine genes involved in the biosynthesis of ginsenoside skeletons and many candidate genes putatively responsible for modification of the skeletons, including 133 cytochrome P450s and 235 glycosyltransferases, were identified. From these candidates, six transcripts encoding UDP-glycosyltransferases that were most likely to be involved in ginsenoside biosynthesis were selected. These results open a new avenue by which to explore and exploit biosynthetic and biochemical properties that may lead to drug improvement. These 454 ESTs will provide the foundation for further functional genomic research into the traditional herb P. ginseng or its closely related species.


BMC Complementary and Alternative Medicine | 2010

Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway

Changming Liu; Jianqin Li; Fanyi Meng; Simon X. Liang; Ruixia Deng; Chi K Li; Nh Pong; Ching Po Lau; Sau Wan Cheng; Jie Ye; Jian Lin Chen; St Yang; Haixia Yan; Chen Sl; Beng H. Chong; Mo Yang

BackgroundDozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of blood production for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of Radix Angelicae Sinensis and Radix Astragali in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of Radix Angelicae Sinensis (APS) in this study.MethodsA myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested.ResultsIn animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis.ConclusionsAPS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.


Science China-life Sciences | 2012

De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum

Da-Cheng Hao; Pei Ma; Jun Mu; Chen Sl; Pei-Gen Xiao; Yong Peng; Li Huo; Lijia Xu; Chao Sun

Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via Illumina HiSeq 2000 sequencing. A total of 86418 unigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthraquinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.


Plant Physiology | 2015

Functional Divergence of Diterpene Syntheses in the Medicinal Plant Salvia miltiorrhiza

Guanghong Cui; Lixin Duan; Baolong Jin; Jun Qian; Zheyong Xue; Guoan Shen; John Hugh Snyder; Jingyuan Song; Chen Sl; Luqi Huang; Reuben J. Peters; Xiaoquan Qi

Positive selection and the divergent evolution by exon/intron patterns driving the fast divergence of copalyl diphosphate synthases underlie the biosynthesis of specialized diterpenes. The medicinal plant Salvia miltiorrhiza produces various tanshinone diterpenoids that have pharmacological activities such as vasorelaxation against ischemia reperfusion injury and antiarrhythmic effects. Their biosynthesis is initiated from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate by sequential reactions catalyzed by copalyl diphosphate synthase (CPS) and kaurene synthase-like cyclases. Here, we report characterization of these enzymatic families from S. miltiorrhiza, which has led to the identification of unique pathways, including roles for separate CPSs in tanshinone production in roots versus aerial tissues (SmCPS1 and SmCPS2, respectively) as well as the unique production of ent-13-epi-manoyl oxide by SmCPS4 and S. miltiorrhiza kaurene synthase-like2 in floral sepals. The conserved SmCPS5 is involved in gibberellin plant hormone biosynthesis. Down-regulation of SmCPS1 by RNA interference resulted in substantial reduction of tanshinones, and metabolomics analysis revealed 21 potential intermediates, indicating a complex network for tanshinone metabolism defined by certain key biosynthetic steps. Notably, the correlation between conservation pattern and stereochemical product outcome of the CPSs observed here suggests a degree of correlation that, especially when combined with the identity of certain key residues, may be predictive. Accordingly, this study provides molecular insights into the evolutionary diversification of functional diterpenoids in plants.


Science China-life Sciences | 2010

Assessment of candidate plant DNA barcodes using the Rutaceae family.

Kun Luo; Chen Sl; Keli Chen; Jingyuan Song; Hui Yao; Xinye Ma; Yingjie Zhu; Xiaohui Pang; Hua Yu; Xiwen Li; Zhen Liu

DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention. Here, seven regions (psbA-trnH, matK, ycf5, rpoC1, rbcL, ITS2, and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae. To evaluate each barcode’s utility for species authentication, PCR amplification efficiency, genetic divergence, and barcoding gaps were assessed. We found that the ITS2 region exhibited the highest inter-specific divergence, and that this was significantly higher than the intra-specific variation in the “DNA barcoding gap” assessment and Wilcoxon two-sample tests. The ITS2 locus had the highest identification efficiency among all tested regions. In a previous study, we found that ITS2 was able to discriminate a wide range of plant taxa, and here we confirmed that ITS2 was also able to discriminate a number of closely related species. Therefore, we propose that ITS2 is a promising candidate barcode for plant species identification.


Scientific Reports | 2016

SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza

Yangyun Zhou; Wei Sun; Hexin Tan; Ying Xiao; Qing Li; Qian Ji; Shouhong Gao; Li Chen; Chen Sl; Lei Zhang; Wansheng Chen

Salvia miltiorrhiza Bunge, which contains tanshinones and phenolic acids as major classes of bioactive components, is one of the most widely used herbs in traditional Chinese medicine. Production of tanshinones and phenolic acids is enhanced by methyl jasmonate (MeJA). Transcription factor MYC2 is the switch of jasmontes signaling in plants. Here, we focused on two novel JA-inducible genes in S. miltiorrhiza, designated as SmMYC2a and SmMYC2b, which were localized in the nucleus. SmMYC2a and SmMYC2b were also discovered to interact with SmJAZ1 and SmJAZ2, implying that the two MYC2s might function as direct targets of JAZ proteins. Ectopic RNA interference (RNAi)-mediated knockdown experiments suggested that SmMYC2a/b affected multiple genes in tanshinone and phenolic acid biosynthetic pathway. Besides, the accumulation of tanshinones and phenolic acids was impaired by the loss of function in SmMYC2a/b. Meanwhile, SmMYC2a could bind with an E-box motif within SmHCT6 and SmCYP98A14 promoters, while SmMYC2b bound with an E-box motif within SmCYP98A14 promoter, through which the regulation of phenolic acid biosynthetic pathway might achieve. Together, these results suggest that SmMYC2a and SmMYC2b are JAZ-interacting transcription factors that positively regulate the biosynthesis of tanshinones and Sal B with similar but irreplaceable effects.


Scientific Reports | 2015

An integrated system for identifying the hidden assassins in traditional medicines containing aristolochic acids.

Lan Wu; Wei Sun; Bo Wang; Haiyu Zhao; Yaoli Li; Shaoqing Cai; Li Xiang; Yingjie Zhu; Hui Yao; Jingyuan Song; Yung-Chi Cheng; Chen Sl

Traditional herbal medicines adulterated and contaminated with plant materials from the Aristolochiaceae family, which contain aristolochic acids (AAs), cause aristolochic acid nephropathy. Approximately 256 traditional Chinese patent medicines, containing Aristolochiaceous materials, are still being sold in Chinese markets today. In order to protect consumers from health risks due to AAs, the hidden assassins, efficient methods to differentiate Aristolochiaceous herbs from their putative substitutes need to be established. In this study, 158 Aristolochiaceous samples representing 46 species and four genera as well as 131 non-Aristolochiaceous samples representing 33 species, 20 genera and 12 families were analyzed using DNA barcodes based on the ITS2 and psbA-trnH sequences. Aristolochiaceous materials and their non-Aristolochiaceous substitutes were successfully identified using BLAST1, the nearest distance method and the neighbor-joining (NJ) tree. In addition, based on sequence information of ITS2, we developed a Real-Time PCR assay which successfully identified herbal material from the Aristolochiaceae family. Using Ultra High Performance Liquid Chromatography-Mass Spectrometer (UHPLC-HR-MS), we demonstrated that most representatives from the Aristolochiaceae family contain toxic AAs. Therefore, integrated DNA barcodes, Real-Time PCR assays using TaqMan probes and UHPLC-HR-MS system provides an efficient and reliable authentication system to protect consumers from health risks due to the hidden assassins (AAs).


BMC Genomics | 2014

Characterisation of Caenorhabditis elegans sperm transcriptome and proteome.

Xuan Ma; Yingjie Zhu; Chunfang Li; Peng Xue; Yanmei Zhao; Chen Sl; Fuquan Yang; Long Miao

BackgroundAlthough sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome.ResultsFirst, sperm transcriptome consists of considerable amounts of non-coding RNAs, many of which have not been annotated and may play functional roles during spermatogenesis. Second, apart from kinases/phosphatases as previously reported, ion binding proteins are also enriched in sperm, underlying the crucial roles of intracellular ions in post-translational regulation in sperm. Third, while the majority of sperm genes/proteins have low abundance, a small number of sperm genes/proteins are hugely enriched in sperm, implying that sperm only rely on a small set of proteins for post-translational regulation. Lastly, by extensive RNAi screening of sperm enriched genes, we identified a few genes that control fertility. Our further analysis reveals a tight correlation between sperm transcriptome and sperm small RNAome, suggesting that the endogenous siRNAs strongly repress sperm genes. This leads to an idea that the inefficient RNAi screening of sperm genes, a phenomenon currently with unknown causes, might result from the competition between the endogenous RNAi pathway and the exogenous RNAi pathway.ConclusionsTogether, the obtained sperm transcriptome and proteome serve as valuable resources to systematically study spermatogenesis in C. elegans.

Collaboration


Dive into the Chen Sl's collaboration.

Top Co-Authors

Avatar

Jingyuan Song

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yingjie Zhu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiwen Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jun Qian

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Peigen Xiao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hongmei Luo

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Baosheng Liao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Linlin Dong

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Wei Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Li

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge