Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chen-Zi Zhao is active.

Publication


Featured researches published by Chen-Zi Zhao.


Chemical Reviews | 2017

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review

Xin-Bing Cheng; Rui Zhang; Chen-Zi Zhao; Qiang Zhang

The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applications is included. A general conclusion and a perspective on the current limitations and recommended future research directions of lithium metal batteries are presented. The review concludes with an attempt at summarizing the theoretical and experimental achievements in lithium metal anodes and endeavors to realize the practical applications of lithium metal batteries.


Advanced Science | 2016

A Review of Solid Electrolyte Interphases on Lithium Metal Anode

Xin-Bing Cheng; Rui Zhang; Chen-Zi Zhao; Fei Wei; Ji-Guang Zhang; Qiang Zhang

Lithium metal batteries (LMBs) are among the most promising candidates of high‐energy‐density devices for advanced energy storage. However, the growth of dendrites greatly hinders the practical applications of LMBs in portable electronics and electric vehicles. Constructing stable and efficient solid electrolyte interphase (SEI) is among the most effective strategies to inhibit the dendrite growth and thus to achieve a superior cycling performance. In this review, the mechanisms of SEI formation and models of SEI structure are briefly summarized. The analysis methods to probe the surface chemistry, surface morphology, electrochemical property, dynamic characteristics of SEI layer are emphasized. The critical factors affecting the SEI formation, such as electrolyte component, temperature, current density, are comprehensively debated. The efficient methods to modify SEI layer with the introduction of new electrolyte system and additives, ex‐situ‐formed protective layer, as well as electrode design, are summarized. Although these works afford new insights into SEI research, robust and precise routes for SEI modification with well‐designed structure, as well as understanding of the connection between structure and electrochemical performance, is still inadequate. A multidisciplinary approach is highly required to enable the formation of robust SEI for highly efficient energy storage systems.


Advanced Materials | 2016

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries.

Xin-Bing Cheng; Ting-Zheng Hou; Rui Zhang; Hong-Jie Peng; Chen-Zi Zhao; Jia-Qi Huang; Qiang Zhang

Li dendrite-free growth is achieved by employing glass fiber with large polar functional groups as the interlayer of Li metal anode and separator to uniformly distribute Li ions. The evenly distributed Li ions render the dendrite-free Li deposits at high rates (10 mA cm(-2)) and high lithiation capacity (2.0 mAh cm(-2)).


ACS Nano | 2015

Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium–Sulfur Batteries

Xin-Bing Cheng; Hong-Jie Peng; Jia-Qi Huang; Rui Zhang; Chen-Zi Zhao; Qiang Zhang

Lithium-sulfur (Li-S) batteries, with a theoretical energy density of 2600 Wh kg(-1), are a promising platform for high-energy and cost-effective electrochemical energy storage. However, great challenges such as fast capacity degradation and safety concerns prevent it from widespread application. With the adoption of Li metal as the anode, dendritic and mossy metal depositing on the negative electrode during repeated cycles leads to serious safety concerns and low Coulombic efficiency. Herein, we report a distinctive graphene framework structure coated by an in situ formed solid electrolyte interphase (SEI) with Li depositing in the pores as the anode of Li-S batteries. The graphene-based metal anode demonstated a superior dendrite-inhibition behavior in 70 h of lithiation, while the cell with a Cu foil based metal anode was short-circuited after only 4 h of lithiation at 0.5 mA cm(-2). The graphene-modified Li anode with SEI induced by the polysulfide-containing electrolyte improved the Coulombic efficiency to ∼97% for more than 100 cycles, while the control sample with Cu foil as the current collector exhibited huge fluctuations in Coulombic efficiency. The unblocked ion pathways and high electron conductivities of frameworks in the modified metal anode led to the rapid transfer of Li ions through the SEI and endowed the anode framework with an ion conductivity of 7.81 × 10(-2) mS cm(-1), nearly quintuple that of the Cu foil based Li metal anode. Besides, the polarization in the charge-discharge process was halved to 30 mV. The stable and efficient Li deposition was maintained after 2000 cycles. Our results indicated that nanoscale interfacial electrode engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes, thus improving the safety of Li-S cells.


Proceedings of the National Academy of Sciences of the United States of America | 2017

An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes

Chen-Zi Zhao; Xue-Qiang Zhang; Xin-Bing Cheng; Rui Zhang; Rui Xu; Peng-Yu Chen; Hong-Jie Peng; Jia-Qi Huang; Qiang Zhang

Significance The Li metal electrode is regarded as a “Holy Grail” anode for next-generation batteries due to its extremely high theoretical capacity and lowest reduction potential. Unfortunately, uncontrolled dendrite growth leads to serious safety issues. This work realizes a dendrite-free Li metal anode by introducing an anion-immobilized composite solid electrolyte, where anions are tethered to polymer chains and ceramic particles. Immobilized anions contribute to uniform distribution of Li ions and dendrite-free Li deposition. The flexible electrolyte can be applied in all–solid-state Li metal batteries with excellent specific capacities. This work demonstrates a concept to adjust ion distribution based on solid-state electrolytes for safe dendrite-free Li anodes, paving the way to practical Li metal batteries. Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g−1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries.


Journal of the American Chemical Society | 2017

Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control

Hong-Jie Peng; Jia-Qi Huang; Xin-Yan Liu; Xin-Bing Cheng; Wen-Tao Xu; Chen-Zi Zhao; Fei Wei; Qiang Zhang

Self-healing capability helps biological systems to maintain their survivability and extend their lifespan. Similarly, self-healing is also beneficial to next-generation secondary batteries because high-capacity electrode materials, especially the cathodes such as oxygen or sulfur, suffer from shortened cycle lives resulting from irreversible and unstable phase transfer. Herein, by mimicking a biological self-healing process, fibrinolysis, we introduced an extrinsic healing agent, polysulfide, to enable the stable operation of sulfur microparticle (SMiP) cathodes. An optimized capacity (∼3.7 mAh cm-2) with almost no decay after 2000 cycles at a high sulfur loading of 5.6 mg(S) cm-2 was attained. The inert SMiP is activated by the solubilization effect of polysulfides whereas the unstable phase transfer is mediated by mitigated spatial heterogeneity of polysulfides, which induces uniform nucleation and growth of solid compounds. The comprehensive understanding of the healing process, as well as of the spatial heterogeneity, could further guide the design of novel healing agents (e.g., lithium iodine) toward high-performance rechargeable batteries.


Chemsuschem | 2015

Towards Stable Lithium–Sulfur Batteries with a Low Self‐Discharge Rate: Ion Diffusion Modulation and Anode Protection

Wen-Tao Xu; Hong-Jie Peng; Jia-Qi Huang; Chen-Zi Zhao; Xin-Bing Cheng; Qiang Zhang

The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration.


Journal of Materials Chemistry | 2016

Unexpected highly reversible topotactic CO2 sorption/desorption capacity for potassium dititanate

Qianwen Zheng; Liang Huang; Yu Zhang; Junya Wang; Chen-Zi Zhao; Qiang Zhang; Weijie Zheng; Dapeng Cao; Dermot O'Hare; Qiang Wang

Potassium dititanate (K2Ti2O5) was revealed to possess an unexpected, highly reversible CO2 sorption/desorption capacity at ca. 750 °C, which is promising as a high-temperature CO2 adsorbent for sorption enhanced hydrogen production (SEHP) processes. In contrast to numerous other adsorbents that are severely sintered during cycles at high temperatures, the CO2 sorption/desorption cycles over K2Ti2O5 exhibited a contrast particle size “break-down” process. The large K2Ti2O5 particles gradually breakdown into K2Ti2O5 nanofibers after 20 cycles, leading to a very stable CO2 sorption/desorption performance with very rapid kinetics. A reversible CO2 capture capacity as high as 7.2 wt% was achieved at 750 °C. Moreover, only 6 min is required for complete CO2 desorption at 750 °C, indicating that this adsorbent can be practically run with a simple pressure swing sorption scheme. Surprisingly, an interesting structure switching phenomenon between K2Ti2O5 and K2Ti4O9 caused by CO2 sorption and desorption was revealed. A detailed mechanism was proposed based on XRD, FTIR, SEM, HR-TEM, and SAED analyses and was further verified by density functional theory calculation. Considering its relatively high CO2 capture capacity, superior cycling stability, and excellent regeneration ability, we believe K2Ti2O5 offers significant potential as a practical, novel high-temperature CO2 adsorbent.


Advanced Materials | 2016

Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth

Rui Zhang; Xin-Bing Cheng; Chen-Zi Zhao; Hong-Jie Peng; Jia-Le Shi; Jia-Qi Huang; Jinfu Wang; Fei Wei; Qiang Zhang


Journal of Power Sources | 2016

Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode

Chong Yan; Xin-Bing Cheng; Chen-Zi Zhao; Jia-Qi Huang; Shu-Ting Yang; Qiang Zhang

Collaboration


Dive into the Chen-Zi Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia-Qi Huang

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Yan

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Xu

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge