Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia-Qi Huang is active.

Publication


Featured researches published by Jia-Qi Huang.


Nature Communications | 2014

Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries

Meng-Qiang Zhao; Qiang Zhang; Jia-Qi Huang; Gui-Li Tian; Jing-Qi Nie; Hong-Jie Peng; Fei Wei

Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g(-1) and 380 mA h g(-1) are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.


ACS Nano | 2012

Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.

Meng-Qiang Zhao; Xiao-Fei Liu; Qiang Zhang; Gui-Li Tian; Jia-Qi Huang; Wancheng Zhu; Fei Wei

The theoretically proposed graphene/single-walled carbon nanotube (G/SWCNT) hybrids by placing SWCNTs among graphene planes through covalent C-C bonding are expected to have extraordinary physical properties and promising engineering applications. However, the G/CNT hybrids that have been fabricated differ greatly from the proposed G/SWCNT hybrids because either the covalent C-C bonding is not well constructed or only multiwalled CNTs/carbon nanofibers rather than SWCNTs are available in the hybrids. Herein, a novel G/SWCNT hybrid was successfully fabricated by a facile catalytic growth on layered double hydroxide (LDH) at a high temperature over 950 °C. The thermally stable Fe nanoparticles and the uniform structure of the calcined LDH flakes are essential for the simultaneously catalytic deposition of SWCNTs and graphene. The SWCNTs and the CVD-grown graphene, as well as the robust connection between the SWCNTs and graphene, facilitated the construction of a high electrical conductive pathway. The internal spaces between the two stacked graphene layers and among SWCNTs offer room for sulfur storage. Therefore, the as obtained G/SWCNT-S cathode exhibited excellent performance in Li-S batteries with a capacity as high as 650 mAh g(-1) after 100 cycles even at a high current rate of 5 C. Such a novel G/SWCNT hybrid can serve not only as a prototype to shed light on the chemical principle of G/CNT synthesis but also as a platform for their further applications in the area of nanocomposites, heterogeneous catalysis, drug delivery, electrochemical energy storage, and so on.


Small | 2014

Nitrogen-doped graphene/carbon nanotube hybrids : in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction

Gui-Li Tian; Meng-Qiang Zhao; Dingshan Yu; Xiang-Yi Kong; Jia-Qi Huang; Qiang Zhang; Fei Wei

There is a growing interest in oxygen electrode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as they play a key role in a wide range of renewable energy technologies such as fuel cells, metal-air batteries, and water splitting. Nevertheless, the development of highly-active bifunctional catalysts at low cost for both ORR and OER still remains a huge challenge. Herein, we report a new N-doped graphene/single-walled carbon nanotube (SWCNT) hybrid (NGSH) material as an efficient noble-metal-free bifunctional electrocatalyst for both ORR and OER. NGSHs were fabricated by in situ doping during chemical vapor deposition growth on layered double hydroxide derived bifunctional catalysts. Our one-step approach not only provides simultaneous growth of graphene and SWCNTs, leading to the formation of three dimensional interconnected network, but also brings the intrinsic dispersion of graphene and carbon nanotubes and the dispersion of N-containing functional groups within a highly conductive scaffold. Thus, the NGSHs possess a large specific surface area of 812.9 m(2) g(-1) and high electrical conductivity of 53.8 S cm(-1) . Despite of relatively low nitrogen content (0.53 at%), the NGSHs demonstrate a high ORR activity, much superior to two constituent components and even comparable to the commercial 20 wt% Pt/C catalysts with much better durability and resistance to crossover effect. The same hybrid material also presents high catalytic activity towards OER, rendering them high-performance cheap catalysts for both ORR and OER. Our result opens up new avenues for energy conversion technologies based on earth-abundant, scalable, noble-metal-free catalysts.


Small | 2013

The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post‐Treatment, and Bulk Applications for Composites and Energy Storage

Qiang Zhang; Jia-Qi Huang; Weizhong Qian; Yingying Zhang; Fei Wei

The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100


Advanced Materials | 2014

Nitrogen‐Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High‐Rate Lithium‐Sulfur Batteries

Cheng Tang; Qiang Zhang; Meng-Qiang Zhao; Jia-Qi Huang; Xin-Bing Cheng; Gui-Li Tian; Hong-Jie Peng; Fei Wei

kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10


Nano Letters | 2016

Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts

Zhe Yuan; Hong-Jie Peng; Ting-Zheng Hou; Jia-Qi Huang; Cheng-Meng Chen; Dai-Wei Wang; Xin-Bing Cheng; Fei Wei; Qiang Zhang

kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry.


Energy and Environmental Science | 2014

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries

Jia-Qi Huang; Qiang Zhang; Hong-Jie Peng; Xin-Yan Liu; Weizhong Qian; Fei Wei

Nitrogen-doped aligned CNT/graphene sandwiches are rationally designed and in-situ fabricated by a facile catalytic growth on bifunctional natural catalysts that exhibit high-rate performances as scaffolds for lithium-sulfur batteries, with a high initial capacity of 1152 mA h g(-1) at 1.0 C. A remarkable capacity of 770 mA h g(-1) can be achieved at 5.0 C. Such a design strategy for materials opens up new perspectives to novel advanced functional composites, especially interface-modified hierarchical nanocarbons for broad applications.


Nano Letters | 2011

Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers

Zheng Liu; Li Song; Shizhen Zhao; Jia-Qi Huang; Lulu Ma; Jiangnan Zhang; Jun Lou; Pulickel M. Ajayan

Lithium-sulfur (Li-S) battery system is endowed with tremendous energy density, resulting from the complex sulfur electrochemistry involving multielectron redox reactions and phase transformations. Originated from the slow redox kinetics of polysulfide intermediates, the flood of polysulfides in the batteries during cycling induced low sulfur utilization, severe polarization, low energy efficiency, deteriorated polysulfide shuttle, and short cycling life. Herein, sulfiphilic cobalt disulfide (CoS2) was incorporated into carbon/sulfur cathodes, introducing strong interaction between lithium polysulfides and CoS2 under working conditions. The interfaces between CoS2 and electrolyte served as strong adsorption and activation sites for polar polysulfides and therefore accelerated redox reactions of polysulfides. The high polysulfide reactivity not only guaranteed effective polarization mitigation and promoted energy efficiency by 10% but also promised high discharge capacity and stable cycling performance during 2000 cycles. A slow capacity decay rate of 0.034%/cycle at 2.0 C and a high initial capacity of 1368 mAh g(-1) at 0.5 C were achieved. Since the propelling redox reaction is not limited to Li-S system, we foresee the reported strategy herein can be applied in other high-power devices through the systems with controllable redox reactions.


ACS Nano | 2015

Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries

Jia-Qi Huang; Ting-Zhou Zhuang; Qiang Zhang; Hong-Jie Peng; Cheng-Meng Chen; Fei Wei

Lithium–sulfur batteries attract great attention due to their high energy density, while their real applications are still hindered by the rapid capacity degradation. Despite great efforts devoted to solving the polysulfide shuttle between the cathode and anode electrodes, it remains a serious challenge to build highly-stable lithium–sulfur batteries. Herein we demonstrate a strategy of introducing an ion selective membrane to improve the stability and coulombic efficiency of lithium–sulfur batteries. The sulfonate-ended perfluoroalkyl ether groups on the ionic separators are connected by pores or channels that are around several nanometers in size. These SO3− groups-coated channels allow ion hopping of positively charged species (Li+) but reject hopping of negative ions, such as polysulfide anions (Sn2−) in this specific case due to the coulombic interactions. Consequently, this cation permselective membrane acts as an electrostatic shield for polysulfide anions, and confines the polysulfides on the cathode side. An ultra-low decay rate of 0.08% per cycle is achieved within the initial 500 cycles for the membrane developed in this work, which is less than half that of the routine membranes. Such an ion selective membrane is versatile for various electrodes and working conditions, which is promising for the construction of high performance batteries.


Advanced Materials | 2016

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries.

Xin-Bing Cheng; Ting-Zheng Hou; Rui Zhang; Hong-Jie Peng; Chen-Zi Zhao; Jia-Qi Huang; Qiang Zhang

Graphene (G) and atomic layers of hexagonal boron nitride (h-BN) are complementary two-dimensional materials, structurally very similar but with vastly different electronic properties. Recent studies indicate that h-BN atomic layers would be excellent dielectric layers to complement graphene electronics. Graphene on h-BN has been realized via peeling of layers from bulk material to create G/h-BN stacks. Considering that both these layers can be independently grown via chemical vapor deposition (CVD) of their precursors on metal substrates, it is feasible that these can be sequentially grown on substrates to create the G/h-BN stacked layers useful for applications. Here we demonstrate the direct CVD growth of h-BN on highly oriented pyrolytic graphite and on mechanically exfoliated graphene, as well as the large area growth of G/h-BN stacks, consisting of few layers of graphene and h-BN, via a two-step CVD process. The G/h-BN film is uniform and continuous and could be transferred onto different substrates for further characterization and device fabrication.

Collaboration


Dive into the Jia-Qi Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Yan

Beijing Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge