Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chendong Yang is active.

Publication


Featured researches published by Chendong Yang.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

Tzuling Cheng; Jessica Sudderth; Chendong Yang; Andrew R. Mullen; Eunsook S. Jin; José M. Matés; Ralph J. DeBerardinis

Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis.


Cell Metabolism | 2012

Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

Isaac Marin-Valencia; Chendong Yang; Tomoyuki Mashimo; Steve K. Cho; Hyeonman Baek; Xiao Li Yang; Kartik N. Rajagopalan; Melissa Maddie; Vamsidhara Vemireddy; Zhenze Zhao; Ling Cai; Levi B. Good; Benjamin P. Tu; Kimmo J. Hatanpaa; Bruce Mickey; José M. Matés; Juan M. Pascual; Elizabeth A. Maher; Craig R. Malloy; Ralph J. DeBerardinis; Robert M. Bachoo

Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.


Journal of Biological Chemistry | 2006

Sterol Intermediates from Cholesterol Biosynthetic Pathway as Liver X Receptor Ligands

Chendong Yang; Jeffrey G. McDonald; Amit C. Patel; Yuan Zhang; Michihisa Umetani; Fang Xu; Emily J. Westover; Douglas F. Covey; David J. Mangelsdorf; Jonathan C. Cohen; Helen H. Hobbs

The liver X receptors (LXRs) are ligand-activated transcription factors that regulate the expression of genes controlling lipid metabolism. Oxysterols bind LXRs with high affinity in vitro and are implicated as ligands for the receptor. We showed previously that accumulation of selected dietary sterols, in particular stigmasterol, is associated with activation of LXR in vivo. In the course of the defining of structural features of stigmasterol that confer LXR agonist activity, we determined that the presence of an unsaturated bond in the side chain of the sterol was necessary and sufficient for activity, with the C-24 unsaturated cholesterol precursor sterols desmosterol and zymosterol exerting the largest effects. Desmosterol failed to increase expression of the LXR target gene, ABCA1, in LXRα/β-deficient mouse fibroblasts, but was fully active in cells lacking cholesterol 24-, 25-, and 27-hydroxylase; thus, the effect of desmosterol was LXR-dependent and did not require conversion to a side chain oxysterol. Desmosterol bound to purified LXRα and LXRβ in vitro and supported the recruitment of steroid receptor coactivator 1. Desmosterol also inhibited processing of the sterol response element-binding protein-2 and reduced expression of hydroxymethylglutaryl-CoA reductase. These observations are consistent with specific intermediates in the cholesterol biosynthetic pathway regulating lipid homeostasis through both the LXR and sterol response element-binding protein pathways.


Molecular Cell | 2014

Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

Chendong Yang; Bookyung Ko; Christopher T. Hensley; Lei Jiang; Ajla T. Wasti; Jiyeon Kim; Jessica Sudderth; MariaAntonietta Calvaruso; Lloyd Lumata; Matthew A. Mitsche; Jared Rutter; Matthew E. Merritt; Ralph J. DeBerardinis

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Journal of Clinical Investigation | 2004

Disruption of cholesterol homeostasis by plant sterols

Chendong Yang; Liqing Yu; Wei Ping Li; Fang Xu; Jonathan C. Cohen; Helen H. Hobbs

The ABC transporters ABCG5 and ABCG8 limit absorption and promote excretion of dietary plant sterols. It is not known why plant sterols are so assiduously excluded from the body. Here we show that accumulation of plant sterols in mice lacking ABCG5 and ABCG8 (G5G8-/- mice) profoundly perturbs cholesterol homeostasis in the adrenal gland. The adrenal glands of the G5G8-/- mice were grossly abnormal in appearance (brown, not white) due to a 91% reduction in cholesterol content. Despite the very low cholesterol levels, there was no compensatory increase in cholesterol synthesis or in lipoprotein receptor expression. Moreover, levels of ABCA1, which mediates sterol efflux, were increased 10-fold in the G5G8-/- adrenals. Adrenal cholesterol levels returned to near-normal levels in mice treated with ezetimibe, which blocks phytosterol absorption. To determine which plant sterol(s) caused the metabolic changes, we examined the effects of individual plant sterols on cholesterol metabolism in cultured adrenal cells. Addition of stigmasterol, but not sitosterol, inhibited SREBP-2 processing and reduced cholesterol synthesis. Stigmasterol also activated the liver X receptor in a cell-based reporter assay. These data indicate that selected dietary plant sterols disrupt cholesterol homeostasis by affecting two critical regulatory pathways of lipid metabolism.


Nature | 2016

Reductive carboxylation supports redox homeostasis during anchorage-independent growth

Lei Jiang; Alexander A. Shestov; Pamela Swain; Chendong Yang; Seth J. Parker; Qiong A. Wang; Lance S. Terada; Nicholas D. Adams; Michael T. McCabe; Beth Pietrak; Stan Schmidt; Christian M. Metallo; Brian P. Dranka; Benjamin Schwartz; Ralph J. DeBerardinis

Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.


NMR in Biomedicine | 2012

Comparison of kinetic models for analysis of pyruvate‐to‐lactate exchange by hyperpolarized 13C NMR

Crystal Harrison; Chendong Yang; Ashish Jindal; Ralph J. DeBerardinis; M. A. Hooshyar; Matthew E. Merritt; A. Dean Sherry; Craig R. Malloy

The activity of specific enzyme‐catalyzed reactions may be detected in vivo by 13 C NMR of hyperpolarized (HP) substrates. The signals from HP substrates and products, acquired over time, have been fitted to a number of different mathematical models to determine fluxes, but these models have not been critically compared. In this study, two‐pool and three‐pool first‐order models were constructed to measure flux through lactate dehydrogenase in isolated glioblastoma cells by NMR detection of lactate and pyruvate following the addition of HP [1‐13C]pyruvate. Mass spectrometry (MS) was used to independently monitor 13 C enrichment in intra‐ and extracellular lactate. Six models were evaluated using time‐dependent pyruvate C2 and lactate C1 HP NMR data acquired by the use of selective excitation pulses, plus 13 C enrichment data from intracellular and extracellular lactate measured by MS. A three‐pool bidirectional model provided the most accurate description of pyruvate metabolism in these cells. With computed values for T1 of pyruvate and lactate, as well as the effect of pulsing, the initial flux through lactate dehydrogenase was well determined by both the two‐pool bidirectional and unidirectional models when only HP data were available. The three‐pool model was necessary to fit the combined data from both MS and HP, but the simpler two‐pool exchange model was sufficient to determine the 13 C lactate concentration when the lactate appearance was measured only by HP. Copyright


Human Molecular Genetics | 2008

Functional characterization of genetic variants in NPC1L1 supports the sequencing extremes strategy to identify complex trait genes

Saleemah Fahmi; Chendong Yang; Sophie Esmail; Helen H. Hobbs; Jonathan C. Cohen

Resequencing genes in individuals at extremes of the population distribution constitutes a powerful and efficient strategy to identify sequence variants associated with complex traits. An excess of sequence variants at one extreme relative to the other that is not due to chance or to population stratification constitutes evidence for genetic association and implies the presence of functionally significant sequence variants. Recently, we reported that non-synonymous sequence variants in Niemann–Pick type C1-like 1 (NPC1L1), an intestinal cholesterol transporter, were significantly more common among individuals with low cholesterol absorption than in those with high cholesterol absorption. To determine whether sequence variations identified in individuals with low cholesterol absorption affect protein function, we performed studies in cultured cells and in families. Expression of the mutant proteins in Chinese hamster ovarian-K1 cells revealed that a majority (14 of 20) of the variants identified in low absorbers were associated with very low levels of NPC1L1 protein. In two extended families, mean cholesterol absorption levels, as measured using stable isotopes, were significantly lower in family members with the sequence variants than in those without the variant. These data indicate that the excess of sequence variations in individuals with extreme phenotypes reflects an enrichment of functionally significant variants. These findings are consistent with in silico predictions that some sequence variations found in healthy individuals are as deleterious to protein function as mutations that, in other genes, cause monogenic diseases. Such sequence variations may explain a significant fraction of quantitative phenotypic variation in humans.


Journal of Biological Chemistry | 2014

Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells

Chendong Yang; Crystal Harrison; Eunsook S. Jin; David T. Chuang; A. Dean Sherry; Craig R. Malloy; Matthew E. Merritt; Ralph J. DeBerardinis

Background: 13C hyperpolarization sensitively and non-destructively detects pyruvate-lactate exchanges in cancer cells. Results: Combining 13C hyperpolarization with isotopomer analysis allowed many pyruvate-dependent pathways to be quantified simultaneously. Conclusion: Monitoring H[13C]O3− production from hyperpolarized [1-13C]pyruvate yielded a quantitative readout of oncogene-regulated pyruvate dehydrogenase activity. Significance: This approach might enable a broader quantitative assessment of metabolic activity in tumors. Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of 13C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized 13C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined 13C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-13C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-13C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[13C]O3− and [1-13C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-13C]pyruvate. Quantitation of hyperpolarized H[13C]O3− provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[13C]O3− appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-13C]pyruvate metabolism, enhancing exchanges with [1-13C]lactate and suppressing H[13C]O3− formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining 13C isotopomer analyses and dynamic hyperpolarized 13C spectroscopy may enable quantitative flux measurements in living tumors.


Journal of Biological Chemistry | 2006

Differential use of functional domains by coiled-coil coactivator in its synergistic coactivator function with beta-catenin or GRIP1.

Chendong Yang; Jung Ho Kim; Hongwei Li; Michael R. Stallcup

β-Catenin, a pivotal component of the Wnt-signaling pathway, binds to and serves as a transcriptional coactivator for the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcriptional activator proteins and for the androgen receptor (AR), a nuclear receptor. Three components of the p160 nuclear receptor coactivator complex, including CARM1, p300/CBP, and GRIP1 (one of the p160 coactivators), bind to and cooperate with β-catenin to enhance transcriptional activation by TCF/LEF and AR. Here we report that another component of the p160 nuclear receptor coactivator complex, the coiled-coil coactivator (CoCoA), directly binds to and cooperates synergistically with β-catenin as a coactivator for AR and TCF/LEF. CoCoA uses different domains to bind GRIP1 and β-catenin, and it uses different domains to transmit the activating signal to the transcription machinery, depending on whether it is bound to GRIP1 or β-catenin. CoCoA associated specifically with the promoters of transiently transfected and endogenous target genes of TCF/LEF, and reduction of the endogenous CoCoA level decreased the ability of TCF/LEF and β-catenin to activate transcription of transient and endogenous target genes. Thus, CoCoA uses different combinations of functional domains to serve as a physiologically relevant component of the Wnt/β-catenin signaling pathway and the androgen signaling pathway.

Collaboration


Dive into the Chendong Yang's collaboration.

Top Co-Authors

Avatar

Ralph J. DeBerardinis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig R. Malloy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Helen H. Hobbs

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. McDonald

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Cohen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jessica Sudderth

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Jiang

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin P. Tu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bookyung Ko

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge