Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenfei Wang is active.

Publication


Featured researches published by Chenfei Wang.


Nature | 2016

Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.

Xiaoyu Liu; Chenfei Wang; Wenqiang Liu; Chong Li; Xiaochen Kou; Jiayu Chen; Yanhong Zhao; Haibo Gao; Hong Wang; Yong Zhang; Yawei Gao; Shaorong Gao

Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP–seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.


Nature Protocols | 2013

Target analysis by integration of transcriptome and ChIP-seq data with BETA

Su Wang; Hanfei Sun; Jian Ma; Chongzhi Zang; Chenfei Wang; Juan Wang; Qianzi Tang; Clifford A. Meyer; Yong Zhang; X. Shirley Liu

The combination of ChIP-seq and transcriptome analysis is a compelling approach to unravel the regulation of gene expression. Several recently published methods combine transcription factor (TF) binding and gene expression for target prediction, but few of them provide an efficient software package for the community. Binding and expression target analysis (BETA) is a software package that integrates ChIP-seq of TFs or chromatin regulators with differential gene expression data to infer direct target genes. BETA has three functions: (i) to predict whether the factor has activating or repressive function; (ii) to infer the factors target genes; and (iii) to identify the motif of the factor and its collaborators, which might modulate the factors activating or repressive function. Here we describe the implementation and features of BETA to demonstrate its application to several data sets. BETA requires ∼1 GB of RAM, and the procedure takes 20 min to complete. BETA is available open source at http://cistrome.org/BETA/.


Genome Research | 2014

Canonical nucleosome organization at promoters forms during genome activation

Yong Zhang; Nadine L. Vastenhouw; Jianxing Feng; Kai Fu; Chenfei Wang; Ying Ge; Andrea Pauli; Paul Van Hummelen; Alexander F. Schier; X. Shirley Liu

The organization of nucleosomes influences transcriptional activity by controlling accessibility of DNA binding proteins to the genome. Genome-wide nucleosome binding profiles have identified a canonical nucleosome organization at gene promoters, where arrays of well-positioned nucleosomes emanate from nucleosome-depleted regions. The mechanisms of formation and the function of canonical promoter nucleosome organization remain unclear. Here we analyze the genome-wide location of nucleosomes during zebrafish embryogenesis and show that well-positioned nucleosome arrays appear on thousands of promoters during the activation of the zygotic genome. The formation of canonical promoter nucleosome organization is independent of DNA sequence preference, transcriptional elongation, and robust RNA polymerase II (Pol II) binding. Instead, canonical promoter nucleosome organization correlates with the presence of histone H3 lysine 4 trimethylation (H3K4me3) and affects future transcriptional activation. These findings reveal that genome activation is central to the organization of nucleosome arrays during early embryogenesis.


Cell discovery | 2016

Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

Wenqiang Liu; Xiaoyu Liu; Chenfei Wang; Yawei Gao; Rui Gao; Xiaochen Kou; Yanhong Zhao; You Wu; Wenchao Xiu; Su Wang; Jiqing Yin; Wei Liu; Tao Cai; Hong Wang; Yong Zhang; Shaorong Gao

Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos.


Nature Communications | 2016

LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain

Yixuan Wang; Qian Wu; Peng Yang; Chenfei Wang; Jing Liu; Wenyu Ding; Wensu Liu; Ye Bai; Yuanyuan Yang; Hong Wang; Shaorong Gao; Xiaoqun Wang

Epigenetic regulatory complexes play key roles in the modulation of transcriptional regulation underlying neural stem cell (NSC) proliferation and progeny specification. How specific cofactors guide histone demethylase LSD1/KDM1A complex to regulate distinct NSC-related gene activation and repression in cortical neurogenesis remains unclear. Here we demonstrate that Rcor2, a co-repressor of LSD1, is mainly expressed in the central nervous system (CNS) and plays a key role in epigenetic regulation of cortical development. Depletion of Rcor2 results in reduced NPC proliferation, neuron population, neocortex thickness and brain size. We find that Rcor2 directly targets Dlx2 and Shh, and represses their expressions in developing neocortex. In addition, inhibition of Shh signals rescues the neurogenesis defects caused by Rcor2 depletion both in vivo and in vitro. Hence, our findings suggest that co-repressor Rcor2 is critical for cortical development by repressing Shh signalling pathway in dorsal telencephalon.


Molecular Cancer Research | 2016

Integrative analysis reveals the transcriptional collaboration between EZH2 and E2F1 in the regulation of cancer-related gene expression

Han Xu; Kexin Xu; Housheng Hansen He; Chongzhi Zang; Chen Hao Chen; Yiwen Chen; Qian Qin; Su Wang; Chenfei Wang; Shengen Hu; Fugen Li; Henry W. Long; Myles Brown; X. Shirley Liu

Overexpression of EZH2 is frequently linked to the advanced and metastatic stage of cancers. The mechanisms of its oncogenic function can be context specific, and may vary depending on the protein complexes that EZH2 interacts with. To identify novel transcriptional collaborators of EZH2 in cancers, a computational approach was developed that integrates protein–DNA binding data, cell perturbation gene expression data, and compendiums of tumor expression profiles. This holistic approach identified E2F1, a known mediator of the Rb tumor suppressor, as a transcriptional collaborator of EZH2 in castration-resistant prostate cancer. Subsequent analysis and experimental validation found EZH2 and E2F1 cobind to a subset of chromatin sites lacking H3K27 trimethylation, and activate genes that are critical for prostate cancer progression. The collaboration of EZH2 and E2F1 in transcriptional regulation is also observed in diffuse large B-cell lymphoma cell lines, where activation of the transcriptional network is concordant with the cellular response to the EZH2 inhibitor. Implications: The direct collaboration between EZH2 and Rb/E2F1 pathway provides an innovative mechanism underlying the cascade of tumor progression, and lays the foundation for the development of new anticancer targets/strategies. Mol Cancer Res; 14(2); 163–72. ©2015 AACR.


Journal of Biological Chemistry | 2017

Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes

Kai Xu; Xia Chen; Hui Yang; Yiwen Xu; Yuanlin He; Chenfei Wang; Hua Huang; Baodong Liu; Wenqiang Liu; Xiaochen Kou; Yanhong Zhao; Kun Zhao; Linfeng Zhang; Zhenzhen Hou; Hong Wang; Hailin Wang; Jing zhou Li; Heng-Yu Fan; Fengchao Wang; Yawei Gao; Yong Zhang; Jiayu Chen; Shaorong Gao

Sall4 (Splat-like 4) plays important roles in maintaining pluripotency of embryonic stem cells and in various developmental processes. Here, we find that Sall4 is highly expressed in oocytes and early embryos. To investigate the roles of SALL4 in oogenesis, we generated Sall4 maternal specific knock-out mice by using CRISPR/Cas9 system, and we find that the maternal deletion of Sall4 causes developmental arrest of oocytes at germinal vesicle stage with non-surrounded nucleus, and the subsequent meiosis resumption is prohibited. We further discover that the loss of maternal Sall4 causes failure in establishment of DNA methylation in oocytes. Furthermore, we find that Sall4 modulates H3K4me3 and H3K27me3 modifications by regulating the expression of key histone demethylases coding genes Kdm5b, Kdm6a, and Kdm6b in oocytes. Moreover, we demonstrate that the aberrant H3K4me3 and H3K27me3 cause mis-expression of genes that are critical for oocytes maturation and meiosis resumption. Taken together, our study explores a pivotal role of Sall4 in regulating epigenetic maturation of mouse oocytes.


Scientific Reports | 2015

PHF8 and REST/NRSF co-occupy gene promoters to regulate proximal gene expression

Juan Wang; Xueqiu Lin; Su Wang; Chenfei Wang; Qixuan Wang; Xikun Duan; Peng Lu; Qian Wang; Chengyang Wang; X. Shirley Liu; Jinyan Huang

Chromatin regulators play an important role in the development of human diseases. In this study, we focused on Plant Homeo Domain Finger protein 8 (PHF8), a chromatin regulator that has attracted special concern recently. PHF8 is a histone lysine demethylase ubiquitously expressed in nuclei. Mutations of PHF8 are associated with X-linked mental retardation. It usually functions as a transcriptional co-activator by associating with H3K4me3 and RNA polymerase II. We found that PHF8 may associate with another regulator, REST/NRSF, predominately at promoter regions via studying several published PHF8 chromatin immunoprecipitation-sequencing (ChIP-Seq) datasets. Our analysis suggested that PHF8 not only activates but may also repress gene expression.


Nature Cell Biology | 2018

Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development

Chenfei Wang; Xiaoyu Liu; Yawei Gao; Lei Yang; Chong Li; Wenqiang Liu; Chuan Chen; Xiaochen Kou; Yanhong Zhao; Jiayu Chen; Yixuan Wang; Rongrong Le; Hong Wang; Tao Duan; Yong Zhang; Shaorong Gao

H3K9me3-dependent heterochromatin is a major barrier of cell fate changes that must be reprogrammed after fertilization. However, the molecular details of these events are lacking in early embryos. Here, we map the genome-wide distribution of H3K9me3 modifications in mouse early embryos. We find that H3K9me3 exhibits distinct dynamic features in promoters and long terminal repeats (LTRs). Both parental genomes undergo large-scale H3K9me3 reestablishment after fertilization, and the imbalance in parental H3K9me3 signals lasts until blastocyst. The rebuilding of H3K9me3 on LTRs is involved in silencing their active transcription triggered by DNA demethylation. We identify that Chaf1a is essential for the establishment of H3K9me3 on LTRs and subsequent transcriptional repression. Finally, we find that lineage-specific H3K9me3 is established in post-implantation embryos. In summary, our data demonstrate that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.Gao and colleagues characterize genome-wide H3K9me3 distributions in pre- and post-implantation mouse embryos, providing a resource to further our understanding of epigenomic dynamics during mammalian embryogenesis.


Biomaterials | 2017

Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state

Rui Gao; Wenchao Xiu; Linfeng Zhang; Ruge Zang; Lei Yang; Chenfei Wang; Min Wang; Mingzhu Wang; Li Yi; Yuanyuan Tang; Yawei Gao; Hong Wang; Jiajie Xi; Wenqiang Liu; Yixuan Wang; Xuejun Wen; Yongchun Yu; Yong Zhang; Liang Chen; Jiayu Chen; Shaorong Gao

The generation of functional neural progenitor cells (NPCs) holds great promise for both research and clinical applications in neurodegenerative diseases. Traditionally, NPCs are derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), or NPCs can be directly converted from somatic cells by sets of transcription factors or by a combination of chemical cocktails and/or hypoxia. However, the ethical issues of ESCs, the risk of tumorigenesis from iPSCs and transgenic integration from exogenous genes as well as complicated manipulation and time-consuming of chemical induced NPCs (ciNPCs) limit the applications of these strategies. Here, we describe a novel method for generating growth factor-induced neural progenitor cells (giNPCs) from mouse embryonic and adult fibroblasts by using inductive and/or permissive signaling culture conditions. These giNPCs closely resemble brain-derived NPCs in terms of transcription networks and neural lineage differentiation potentials. Moreover, this somatic cell to NPC induction is a gradual process that includes initiation, intermediate, maturation and stabilization stages. Importantly, gene expression and histone modification analyses further indicate a partially reprogrammed state during the generation process of induced NPCs, in which lineage specific genes and pluripotency associated genes are transiently activated. Our study therefore describes the potential safety problems that also exist in the transgene-free direct induction strategy and highlights the importance of excluding the possibility of residual partially reprogrammed and/or teratoma-like cells from the generated NPCs for future clinical trials.

Collaboration


Dive into the Chenfei Wang's collaboration.

Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge