Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongning Tong is active.

Publication


Featured researches published by Hongning Tong.


Plant Journal | 2009

DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice

Hongning Tong; Yun Jin; Wenbo Liu; Feng Li; Jun Fang; Yanhai Yin; Qian Qian; Lihuang Zhu; Chengcai Chu

Rapid progress has been made regarding the understanding of brassinosteroid (BR) signaling in Arabidopsis. However, little is known about BR signaling in monotyledons. Here, we characterized a rice dwarf and low-tillering (dlt) mutant and cloned the corresponding gene via map-based cloning. DLT encodes a new member of the plant-specific GRAS family. The dwarf phenotype of dlt is similar to BR-deficient or signaling mutants in rice. In addition, both lamina bending and coleoptile elongation assays show that dlt is insensitive or much less responsive to brassinolide (BL), the most active BR, suggesting that DLT is involved in BR signaling. Consistent with this conclusion, the accumulation of transcripts of BR biosynthesis genes in the dlt mutant indicated that DLT is involved in feedback inhibition of BR biosynthesis genes. In addition, transcription of several other BR-regulated genes is altered in the dlt mutant. Finally, consistent with the fact that DLT is also negatively feedback-regulated by BR treatment, a gel mobility shift assay showed that OsBZR1 can bind to the DLT promoter through the BR-response element. Taken together, these studies have enabled us to identify a new signaling component that is involved in several specific BR responses in rice.


The Plant Cell | 2012

DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice.

Hongning Tong; Linchuan Liu; Yun Jin; Lin Du; Yanhai Yin; Qian Qian; Lihuang Zhu; Chengcai Chu

DLT plays a positive role in brassinosteroid (BR) signaling, but the mechanism of its action is not fully understood. This study identifies a GSK3-like kinase (GSK2) as a critical negative regulator of BR signaling in rice and provides evidence that GSK2 phosphorylates and regulates DLT to regulate BR responses. In Arabidopsis thaliana, the GSK3/SHAGGY-like kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) plays a critical role in the brassinosteroid (BR) signaling pathway by negatively regulating the activities of bri1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 family transcription factors that regulate the expression of downstream BR-responsive genes. In this study, we analyzed the function of a rice (Oryza sativa) GSK3/SHAGGY-like kinase (GSK2), which is one of the orthologs of BIN2. Overexpression of GSK2 (Go) led to plants with typical BR loss-of-function phenotypes, and suppression of GSK2 resulted in enhanced BR signaling phenotypes. DWARF AND LOW-TILLERING (DLT) is a positive regulator that mediates several BR responses in rice. Suppression of DLT can enhance the phenotypes of BR receptor mutant d61-1, and overexpression of DLT obviously suppressed the BR loss-of-function phenotypes of both d61-1 and Go, suggesting that DLT functions downstream of GSK2 to modulate BR responses. Indeed, GSK2 can interact with DLT and phosphorylate DLT. Moreover, brassinolide treatment can induce the dephosphorylation of DLT, leading to the accumulation of dephosphorylated DLT protein. In GSK2 transgenic plants, the DLT phosphorylation level is dictated by the GSK2 level. These results demonstrate that DLT is a GSK2 substrate, further reinforcing that the BIN2/GSK2 kinase has multiple substrates that carry out various BR responses.


The Plant Cell | 2014

Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice

Hongning Tong; Yunhua Xiao; Dapu Liu; Shaopei Gao; Linchuan Liu; Yanhai Yin; Yun Jin; Qian Qian; Chengcai Chu

Physiological BR promotes cell elongation by inducing GA accumulation through activation of GA3ox-2 expression, whereas exogenously applied high concentrations of BR inhibit cell elongation by repressing GA level. As a feedback mechanism, GA extensively inhibits BR biosynthesis and signaling. Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.


Nature plants | 2016

Control of grain size and rice yield by GL2 -mediated brassinosteroid responses

Ronghui Che; Hongning Tong; Bihong Shi; Yuqin Liu; Shanru Fang; Dapu Liu; Yunhua Xiao; Bin Hu; Linchuan Liu; Hongru Wang; Mingfu Zhao; Chengcai Chu

Given the continuously growing population and decreasing arable land, food shortage is becoming one of the most serious global problems in this century1. Grain size is one of the determining factors for grain yield and thus is a prime target for genetic breeding2,3. Although a number of quantitative trait loci (QTLs) associated with rice grain size have been identified in the past decade, mechanisms underlying their functions remain largely unknown4,5. Here we show that a grain-length-associated QTL, GL2, has the potential to improve grain weight and grain yield up to 27.1% and 16.6%, respectively. We also show that GL2 is allelic to OsGRF4 and that it contains mutations in the miR396 targeting sequence. Because of the mutation, GL2 has a moderately increased expression level, which consequently activates brassinosteroid responses by upregulating a large number of brassinosteroid-induced genes to promote grain development. Furthermore, we found that GSK2, the central negative regulator of rice brassinosteroid signalling, directly interacts with OsGRF4 and inhibits its transcription activation activity to mediate the specific regulation of grain length by the hormone. Thus, this work demonstrates the feasibility of modulating specific brassinosteroid responses to improve plant productivity.


Cell Research | 2010

Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation

Feng Li; Wenbo Liu; Jiuyou Tang; Jinfeng Chen; Hongning Tong; Bin Hu; Chunlai Li; Jun Fang; Mingsheng Chen; Chengcai Chu

The architecture of the panicle, including grain size and panicle morphology, directly determines grain yield. Panicle erectness, which is selected for achieving ideal plant architecture in the northern part of China, has drawn increasing attention of rice breeders. Here, dense and erect panicle 2 (dep2) mutant, which shows a dense and erect panicle phenotype, was identified. DEP2 encodes a plant-specific protein without any known functional domain. Expression profiling of DEP2 revealed that it is highly expressed in young tissues, with most abundance in young panicles. Morphological and expression analysis indicated that mutation in DEP2 mainly affects the rapid elongation of rachis and primary and secondary branches, but does not impair the initiation or formation of panicle primordia. Further analysis suggests that decrease of panicle length in dep2 is caused by a defect in cell proliferation during the exponential elongation of panicle. Despite a more compact plant type in the dep2 mutant, no significant alteration in grain production was found between wild type and dep2 mutant. Therefore, the study of DEP2 not only strengthens our understanding of the molecular genetic basis of panicle architecture but also has important implications for rice breeding.


Plant Molecular Biology | 2011

OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice

Ting Gao; Yaorong Wu; Yiyue Zhang; Lijing Liu; Yuese Ning; Dongjiang Wang; Hongning Tong; Shou-Yi Chen; Chengcai Chu; Qi Xie

Recent genomic and genetic analyses based on Arabidopsis suggest that ubiquitination plays crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA). However, few such studies have been reported in rice as a monocotyledonous model plant. Taking advantage of strategies in biochemistry, molecular cell biology and genetics, the RING-finger containing E3 ligase OsSDIR1 (Oryza sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) was found to be a candidate drought tolerance gene for engineering of crop plants. The expression of OsSDIR1 was detected in all tissues of rice and up-regulated by drought and NaCl, but not by ABA. In vitro ubiquitination assays demonstrated that OsSDIR1 is a functional E3 ubiquitin ligase and that the RING finger region is required for its activity. OsSDIR1 could complement the drought sensitive phenotype of the sdir1 mutant and overexpressing transgenic Arabidopsis were more sensitive to ABA, indicating that the OsSDIR1 gene is a functional ortholog of SDIR1. Upon drought treatment, the OsSDIR1-transgenic rice showed strong drought tolerance compared to control plants. Analysis of the stomata aperture revealed that there were more closed stomatal pores in transgenic plants than those of control plants. This result was also confirmed by the water loss assay and leaf related water content (RWC) measurements during drought treatment. Thus, we demonstrated that monocot- and dicot- SDIR1s are conserved yet have diverse functions.


Developmental Biology | 2011

An AT-hook gene is required for palea formation and floral organ number control in rice

Yun Jin; Qiong Luo; Hongning Tong; Aiju Wang; Zhijun Cheng; Jinfu Tang; Dayong Li; Xianfeng Zhao; Xiaobing Li; Jianmin Wan; Yuling Jiao; Chengcai Chu; Lihuang Zhu

Grasses have highly specialized flowers and their outer floral organ identity remains unclear. In this study, we identified and characterized rice mutants that specifically disrupted the development of palea, one of the outer whorl floral organs. The depressed palea1 (dp1) mutants show a primary defect in the main structure of palea, implying that palea is a fusion between the main structure and marginal tissues on both sides. The sterile lemma at the palea side is occasionally elongated in dp1 mutants. In addition, we found a floral organ number increase in dp1 mutants at low penetration. Both the sterile lemma elongation and the floral organ number increase phenotype are enhanced by the mutation of an independent gene SMALL DEGENERATIVE PALEA1 (SDP1), whose single mutation causes reduced palea size. E function and presumable A function floral homeotic genes were found suppressed in the dp1-2 mutant. We identified the DP1 gene by map-based cloning and found it encodes a nuclear-localized AT-hook DNA binding protein, suggesting a grass-specific role of chromatin architecture modification in flower development. The DP1 enhancer SDP1 was also positional cloned, and was found identical to the recently reported RETARDED PALEA1 (REP1) gene encoding a TCP family transcription factor. We further found that SDP1/REP1 is downstreamly regulated by DP1.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

Linchuan Liu; Hongning Tong; Yunhua Xiao; Ronghui Che; Fan Xu; Bin Hu; Chengzhen Liang; Jinfang Chu; Jiayang Li; Chengcai Chu

Significance As one of the most important growth-promoting hormones, auxin regulates many aspects of plant growth and development. Understanding auxin action has long been a challenging task because of the complexity of the hormone transport involved in auxin response. Despite tremendous progress made in Arabidopsis, auxin response and transport are poorly understood in crop plants, which impedes the application of hormone knowledge in agricultural improvement. This study not only identifies a novel positive regulator of plant growth in rice and demonstrates its significant role in improving seed size and grain yield, it also illustrates the specific involvement of the plasma membrane-associated protein in regulating auxin response and transport, thus illuminating a new strategy for enhancing crop productivity. Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.


The Plant Cell | 2017

Arabidopsis WRKY46, WRKY54 and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Response

Jiani Chen; Trevor Nolan; Huaxun Ye; Mingcai Zhang; Hongning Tong; Peiyong Xin; Jinfang Chu; Chengcai Chu; Zhaohu Li; Yanhai Yin

Class III WRKY transcription factors play positive roles in brassinosteroid-regulated growth and a negative role in drought response by cooperating with BES1. Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses.


Journal of Genetics and Genomics | 2012

Brassinosteroid signaling and application in rice.

Hongning Tong; Chengcai Chu

Combined approaches with genetics, biochemistry, and proteomics studies have greatly advanced our understanding of brassinosteroid (BR) signaling in Arabidopsis. However, in rice, a model plant of monocot and as well an important crop plant, BR signaling is not as well characterized as in Arabidopsis. Recent studies by forward and reverse genetics have identified a number of either conserved or specific components of rice BR signaling pathway, bringing new ideas into BR signaling regulation mechanisms. Genetic manipulation of BR level or BR sensitivity to improve rice yield has established the great significance of BR research achievements.

Collaboration


Dive into the Hongning Tong's collaboration.

Top Co-Authors

Avatar

Chengcai Chu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linchuan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunhua Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dapu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lihuang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ronghui Che

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge