Chengqi Lin
Stowers Institute for Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengqi Lin.
Molecular Cell | 2010
Chengqi Lin; Edwin R. Smith; Hidehisa Takahashi; Ka Chun Lai; Skylar Martin-Brown; Laurence Florens; Michael P. Washburn; Joan Weliky Conaway; Ronald C. Conaway; Ali Shilatifard
Chromosomal translocations involving the MLL gene are associated with infant acute lymphoblastic and mixed lineage leukemia. There are a large number of translocation partners of MLL that share very little sequence or seemingly functional similarities; however, their translocations into MLL result in the pathogenesis of leukemia. To define the molecular reason why these translocations result in the pathogenesis of leukemia, we purified several of the commonly occurring MLL chimeras. We have identified super elongation complex (SEC) associated with all chimeras purified. SEC includes ELL, P-TEFb, AFF4, and several other factors. AFF4 is required for SEC stability and proper transcription by poised RNA polymerase II in metazoans. Knockdown of AFF4 in leukemic cells shows reduction in MLL chimera target gene expression, suggesting that AFF4/SEC could be a key regulator in the pathogenesis of leukemia through many of the MLL partners.
Molecular and Cellular Biology | 2009
Pengfei Wang; Chengqi Lin; Edwin R. Smith; Hong Guo; Brian W. Sanderson; Min Wu; Madelaine Gogol; Tara B. Alexander; Christopher Seidel; Leanne M. Wiedemann; Kai Ge; Robb Krumlauf; Ali Shilatifard
ABSTRACT A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. Set1/COMPASS was the founding member and is the only H3K4 methylase in Saccharomyces cerevisiae; however, in mammals, at least six H3K4 methylases, Set1A and Set1B and MLL1 to MLL4, are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation patterns in wild-type Mll1+/+ and Mll1−/− mouse embryonic fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes, show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/MLL4 and/or the Set1 complexes has little to no effect on the H3K4 methylation of Hox loci or their expression levels in these MEFs. Together these data provide insight into the redundancy and specialization of COMPASS-like complexes in mammals and provide evidence for a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation.
Cell | 2011
Hidehisa Takahashi; Tari Parmely; Shigeo Sato; Chieri Tomomori-Sato; Charles A. S. Banks; Stephanie E. Kong; Henrietta Szutorisz; Selene K. Swanson; Skylar Martin-Brown; Michael P. Washburn; Laurence Florens; Chris Seidel; Chengqi Lin; Edwin R. Smith; Ali Shilatifard; Ronald C. Conaway; Joan Weliky Conaway
Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.
Genes & Development | 2011
Edwin R. Smith; Chengqi Lin; Ali Shilatifard
Transcriptional regulation at the level of elongation is vital for the control of gene expression and metazoan development. The mixed lineage leukemia (MLL) protein and its Drosophila homolog, Trithorax, which exist within COMPASS (complex of proteins associated with Set1)-like complexes, are master regulators of development. They are required for proper homeotic gene expression, in part through methylation of histone H3 on Lys 4. In humans, the MLL gene is involved in a large number of chromosomal translocations that create chimeric proteins, fusing the N terminus of MLL to several proteins that share little sequence similarity. Several frequent translocation partners of MLL were found recently to coexist in a super elongation complex (SEC) that includes known transcription elongation factors such as eleven-nineteen lysine-rich leukemia (ELL) and P-TEFb. Importantly, the SEC is required for HOX gene expression in leukemic cells, suggesting that chromosomal translocations involving MLL could lead to the overexpression of HOX and other genes through the involvement of the SEC. Here, we review the normal developmental roles of MLL and the SEC, and how MLL fusion proteins can mediate leukemogenesis.
Genes & Development | 2010
Man Mohan; Hans Martin Herz; Yoh Hei Takahashi; Chengqi Lin; Ka Chun Lai; Ying Zhang; Michael P. Washburn; Laurence Florens; Ali Shilatifard
Epigenetic modifications of chromatin play an important role in the regulation of gene expression. KMT4/Dot1 is a conserved histone methyltransferase capable of methylating chromatin on Lys79 of histone H3 (H3K79). Here we report the identification of a multisubunit Dot1 complex (DotCom), which includes several of the mixed lineage leukemia (MLL) partners in leukemia such as ENL, AF9/MLLT3, AF17/MLLT6, and AF10/MLLT10, as well as the known Wnt pathway modifiers TRRAP, Skp1, and beta-catenin. We demonstrated that the human DotCom is indeed capable of trimethylating H3K79 and, given the association of beta-catenin, Skp1, and TRRAP, we investigated, and found, a role for Dot1 in Wnt/Wingless signaling in an in vivo model system. Knockdown of Dot1 in Drosophila results in decreased expression of a subset of Wingless target genes. Furthermore, the loss of expression for the Drosophila homologs of the Dot1-associated proteins involved in the regulation of H3K79 shows a similar reduction in expression of these Wingless targets. From yeast to human, specific trimethylation of H3K79 by Dot1 requires the monoubiquitination of histone H2B by the Rad6/Bre1 complex. Here, we demonstrate that depletion of Bre1, the E3 ligase required for H2B monoubiquitination, leads specifically to reduced bulk H3K79 trimethylation levels and a reduction in expression of many Wingless targets. Overall, our study describes for the first time the components of DotCom and links the specific regulation of H3K79 trimethylation by Dot1 and its associated factors to the Wnt/Wingless signaling pathway.
Nature Reviews Molecular Cell Biology | 2012
Zhuojuan Luo; Chengqi Lin; Ali Shilatifard
The super elongation complex (SEC) consists of the RNA polymerase II (Pol II) elongation factors eleven-nineteen Lys-rich leukaemia (ELL) proteins, positive transcription elongation factor b (P-TEFb) and several frequent mixed lineage leukaemia (MLL) translocation partners. It is one of the most active P-TEFb-containing complexes required for rapid transcriptional induction in the presence or absence of paused Pol II. The SEC was found to regulate the transcriptional elongation checkpoint control (TECC) stage of transcription, and misregulation of this stage is associated with cancer pathogenesis. Recent studies have shown that the SEC belongs to a larger family of SEC-like complexes, which includes SEC-L2 and SEC-L3, each with distinct gene target specificities.
Nature Reviews Cancer | 2010
Man Mohan; Chengqi Lin; Erin M. Guest; Ali Shilatifard
The RNA polymerase II (Pol II) elongation factor (ELL) was the first translocation partner of mixed lineage leukaemia (MLL) for which a biochemical function was determined. It was therefore proposed that the regulation of the elongation stage of transcription could be fundamental to MLL-based leukaemogenesis. Recent studies have identified ELL complexed with several of the translocation partners of MLL in a transcriptional super elongation complex (SEC). These studies provide evidence for the importance of the regulation of Pol II elongation in disease pathogenesis and suggest that MLL chimaeras function by licensing Pol II transcription elongation without the appropriate checkpoints.
Genes & Development | 2011
Chengqi Lin; Alexander S. Garrett; Bony De Kumar; Edwin R. Smith; Madelaine Gogol; Christopher Seidel; Robb Krumlauf; Ali Shilatifard
Transcriptional regulation of developmentally controlled genes is at the heart of differentiation and organogenesis. In this study, we performed global genomic analyses in murine embryonic stem (ES) cells and in human cells in response to activation signals. We identified an essential role for the ELL (eleven-nineteen lysine-rich leukemia gene)/P-TEFb (positive transcription elongation factor)-containing super elongation complex (SEC) in the regulation of gene expression, including several genes bearing paused RNA polymerase II (Pol II). Paused Pol II has been proposed to be associated with loci that respond rapidly to environmental stimuli. However, our studies in ES cells also identified a requirement for SEC at genes without paused Pol II, which also respond dynamically to differentiation signals. Our findings suggest that SEC is a major class of active P-TEFb-containing complexes required for transcriptional activation in response to environmental cues such as differentiation signals.
Molecular and Cellular Biology | 2012
Zhuojuan Luo; Chengqi Lin; Erin M. Guest; Alexander S. Garrett; Nima Mohaghegh; Selene K. Swanson; Stacy A. Marshall; Laurence Florens; Michael P. Washburn; Ali Shilatifard
ABSTRACT The elongation stage of transcription is highly regulated in metazoans. We previously purified the AFF1- and AFF4-containing super elongation complex (SEC) as a major regulator of development and cancer pathogenesis. Here, we report the biochemical isolation of SEC-like 2 (SEC-L2) and SEC-like 3 (SEC-L3) containing AFF2 and AFF3 in association with P-TEFb, ENL/MLLT1, and AF9/MLLT3. The SEC family members demonstrate high levels of polymerase II (Pol II) C-terminal domain kinase activity; however, only SEC is required for the proper induction of the HSP70 gene upon stress. Genome-wide mRNA-Seq analyses demonstrated that SEC-L2 and SEC-L3 control the expression of different subsets of genes, while AFF4/SEC plays a more dominant role in rapid transcriptional induction in cells. MYC is one of the direct targets of AFF4/SEC, and SEC recruitment to the MYC gene regulates its expression in different cancer cells, including those in acute myeloid or lymphoid leukemia. These findings suggest that AFF4/SEC could be a potential therapeutic target for the treatment of leukemia or other cancers associated with MYC overexpression.
Cell | 2013
Chengqi Lin; Alexander S. Garruss; Zhuojuan Luo; Fengli Guo; Ali Shilatifard
Enhancers play a central role in precisely regulating the expression of developmentally regulated genes. However, the machineries required for enhancer-promoter communication have remained largely unknown. We have found that Ell3, a member of the Ell (eleven-nineteen lysine-rich leukemia gene) family of RNA Pol II elongation factors, occupies enhancers in embryonic stem cells. Ell3s association with enhancers is required for setting up proper Pol II occupancy at the promoter-proximal regions of developmentally regulated genes and for the recruitment of the super elongation complex (SEC) to these loci following differentiation signals. Furthermore, Ell3 binding to inactive or poised enhancers is essential for stem cell specification. We have also detected the presence of Pol II and Ell3 in germ cell nuclei. These findings raise the possibility that transcription factors could prime gene expression by marking enhancers in ES cells or even as early as in the germ cell state.