Cheryl A. Miller
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheryl A. Miller.
International Journal of Biomaterials | 2014
Francesco Mangano; L. Chambrone; R. van Noort; Cheryl A. Miller; Paul V. Hatton; Carlo Mangano
Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Martin E. Santocildes-Romero; Aileen Crawford; Paul V. Hatton; Rebecca L. Goodchild; Ian M. Reaney; Cheryl A. Miller
Bioactive glasses are known to stimulate bone healing, and the incorporation of strontium has the potential to increase their potency. In this study, calcium oxide in the 45S5 bioactive glass composition was partially (50%, Sr50) or fully (100%, Sr100) substituted with strontium oxide on a molar basis. The effects of the substitution on bioactive glass properties were studied, including density, solubility, and in vitro cytotoxicity. Stimulation of osteogenic differentiation was investigated using mesenchymal stromal cells obtained from rat bone marrow. Strontium substitution resulted in altered physical properties including increased solubility. Statistically significant reductions in cell viability were observed with the addition of bioactive glass powders to culture medium. Specifically, addition of ≥ 13.3 mg/ml of 45S5 bioactive glass or Sr50, or ≥ 6.7 mg/ml of Sr100, resulted in significant inhibition. Real‐time PCR analyses detected the upregulation of genes associated with osteoblastic differentiation in the presence of all bioactive glass compositions. Some genes, including Alpl and Bglap, were further stimulated in the presence of Sr50 and Sr100. It was concluded that strontium‐substituted bioactive glasses promoted osteogenesis in a differentiating bone cell culture model and, therefore, have considerable potential for use as improved bioactive glasses for bone tissue regeneration.
Biomaterials | 2003
K. Hurrell-Gillingham; Ian M. Reaney; Cheryl A. Miller; Aileen Crawford; Paul V. Hatton
The effects of devitrification of an ionomer glass with a molar composition 4.5SiO(2).3Al(2)O(3).1.5P(2)O(5).3CaO.2CaF(2) on cement formation and in vitro biocompatibility were investigated. Differential thermal analysis was used to study the phase evolution in the glass, and to determine the heat treatments for production of glass-ceramics. X-ray diffraction patterns from glass frit heat-treated at 750 degrees C for 2h contained peaks corresponding to apatite (JCPDS 15-876), whereas for samples heat-treated at 950 degrees C for 2h apatite and mullite (JCPDS 15-776) were the major phases detected. Transmission electron microscopy (TEM) confirmed that apatite and apatite-mullite phases were present after heat treatments at 750 degrees C and 950 degrees C respectively. Glass and glass-ceramics were ground to prepare <45microm powders and glass ionomer cements were produced using a ratio of 1g powder: 0.2g PAA: 0.3g 10% m/v tartaric acid solution in water. In vitro biocompatibility was evaluated using cultured rat osteosarcoma (ROS) cells. Scanning electron microscopy (SEM) showed that cells colonised the surfaces of cements prepared using untreated ionomer glass and glass crystallised to form apatite (750 degrees C/2h). However, quantitative evaluation using MTT and total protein assays indicated that more cell growth occurred in the presence of cements prepared using ionomer glasses crystallised to apatite than cements prepared using untreated glass. The least cell growth and respiratory activity was observed on cements made with crystallised glass containing both apatite and mullite. It was concluded that the controlled devitrification of ionomer glasses could be used to produce GIC bone cements with improved biocompatibility.
Materials | 2015
Piergiorgio Gentile; Caroline J. Wilcock; Cheryl A. Miller; Robert Moorehead; Paul V. Hatton
Hydroxyapatite nanoscale particles (nHA) were prepared by wet chemical precipitation using four different synthesis methods. Differences in physico-chemical properties including morphology, particle-size, and crystallinity were investigated following alteration of critical processing parameters. The nanoparticles were also studied using X-ray diffraction (XRD), Fourier Transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), and transmission electron microscopy (TEM) with energy dispersive X-ray (EDS) spectrometry. The results showed that the particles obtained were composed of nHA, with different morphologies and aspect ratios (1.5 to 4) and degrees of crystallinity (40% to 70% following calcination) depending on the different process parameters of the synthesis method used, such as temperature, ripening time and pH. This study demonstrated that relatively small adjustments to processing conditions of different wet chemical preparation methods significantly affect the morphological and chemical characteristics of nHA. For the predicable preparation of biomimetic nHA for specific applications, the selection of both production method and careful control of processing conditions are paramount.
Advanced Healthcare Materials | 2017
Piergiorgio Gentile; Ana Marina Ferreira; Jill Callaghan; Cheryl A. Miller; Joss Atkinson; Christine Freeman; Paul V. Hatton
Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor cells followed by their migration, proliferation, differentiation, and development of a mineralizing extracellular matrix. The work aims to manufacture a functionalized porous membrane that stimulates early events in bone healing for initiating a regenerative cascade. Layer-by-layer (LbL) assembly is proposed to modify the surface of osteoconductive electrospun meshes, based on poly(lactic-co-glycolic acid) and nanohydroxyapatite, by using poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) as polyelectrolytes. Molecular cues are incorporated by grafting peptide fragments into the discrete nanolayers. KRSR (lysine-arginine-serine-arginine) sequence is grafted to enhance cell adhesion and proliferation, NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells differentiation in osteoblasts, and FHRRIKA (phenylalanine-histidine-arginine-arginine-isoleucine-lysine-alanine) to improve mineralization matrix formation. Scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrate the successful surface functionalization. Furthermore, the peptide incorporation enhances cellular processes, with good viability and significant increase of alkaline phosphatase activity, osteopontin, and osteocalcin. The functionalized membrane induces a favorable in vivo response after implantation for four weeks in nonhealing rat calvarial defect model. It is concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL approach has significant potential as innovative manufacturing technique to improve bone regeneration in orthopedic and craniofacial medical devices.
Acta Biomaterialia | 2016
João S. Fernandes; Piergiorgio Gentile; Margarida Isabel Barros Coelho Martins; Nuno M. Neves; Cheryl A. Miller; Aileen Crawford; Ricardo A. Pires; Paul V. Hatton; Rui L. Reis
UNLABELLED Herein, for the first time, we combined poly-l-lactic acid (PLLA) with a strontium borosilicate bioactive glass (BBG-Sr) using electrospinning to fabricate a composite bioactive PLLA membrane loaded with 10% (w/w) of BBG-Sr glass particles (PLLA-BBG-Sr). The composites were characterised by scanning electron microscopy (SEM) and microcomputer tomography (μ-CT), and the results showed that we successfully fabricated smooth and uniform fibres (1-3μm in width) with a homogeneous distribution of BBG-Sr microparticles (<45μm). Degradation studies (in phosphate buffered saline) demonstrated that the incorporation of BBG-Sr glass particles into the PLLA membranes increased their degradability and water uptake with a continuous release of cations. The addition of BBG-Sr glass particles enhanced the membranes mechanical properties (69% higher Young modulus and 36% higher tensile strength). Furthermore, cellular in vitro evaluation using bone marrow-derived mesenchymal stem cells (BM-MSCs) demonstrated that PLLA-BBG-Sr membranes promoted the osteogenic differentiation of the cells as demonstrated by increased alkaline phosphatase activity and up-regulated osteogenic gene expression (Alpl, Sp7 and Bglap) in relation to PLLA alone. These results strongly suggest that the composite PLLA membranes reinforced with the BBG-Sr glass particles have potential as an effective biomaterial capable of promoting bone regeneration. STATEMENT OF SIGNIFICANCE PLLA membranes were reinforced with 10% (w/w) of strontium-bioactive borosilicate glass microparticles, and their capacity to induce the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) was evaluated. These membranes presented an increased: degradability, water uptake, Young modulus and tensile strength. We also demonstrated that these membranes are non-cytotoxic and promote the attachment of BM-MSCs. The addition of the glass microparticles into the PLLA membranes promoted the increase of ALP activity (under osteogenic conditions), as well as the BM-MSCs osteogenic differentiation as shown by the upregulation of Alpl, Sp7 and Bglap gene expression. Overall, we demonstrated that the reinforcement of PLLA with glass microparticles results in a biomaterial with the appropriate properties for the regeneration of bone tissue.
Journal of Materials Science | 2016
Patrick Rider; Yu Zhang; Christopher Tse; Yi Zhang; Dharana Jayawardane; Jonathan Stringer; Jill Callaghan; Ian M. Brook; Cheryl A. Miller; Xiubo Zhao; Patrick J. Smith
It has recently been shown that regenerated silk fibroin (RSF) aqueous solution can be printed using an inkjet printer. In this communication, we demonstrate an alternative reactive inkjet printing method that provides control over RSF crystallinity through β-sheet concentration. A biocompatible film has successfully been produced through the alternate printing of RSF aqueous solution and methanol using reactive inkjet printing. Control over the formation of the β-sheet structure was achieved by printing different ratios of RSF to methanol and was confirmed using Fourier Transform Infra Red spectroscopy. The biocompatibility of the printed silk scaffold was demonstrated by the growth of fibroblast cells upon its surface.
Journal of Materials Science: Materials in Medicine | 2011
Shashwat Bhakta; Kathryn Hurrell Gillingham; Mehdi Mirsaneh; Cheryl A. Miller; Ian M. Reaney; Ian M. Brook; Richard van Noort; Paul V. Hatton
Potassium fluorrichterite (KNaCaMg5Si8O22F2) glass–ceramics were modified by either increasing the concentration of calcium in the glass (GC5), or by the addition of P2O5 to produce potassium fluorrichterite-fluorapatite (GP2). The solubility of the stoichiometric composition (GST), GC5 and GP2 were measured using the standard test described in ISO 6872:1995 (Dental Ceramics). Ion release profiles were determined for Si, Ca, Mg, Na, K and P using inductively coupled plasma mass spectrometry and fluoride ion (F−) concentration was measured using an ion-selective electrode. The cytotoxicity of all compositions was assessed using cultured rat osteosarcoma cells (ROS, 17/2.8). Cell response was qualitatively assessed using scanning electron microscopy (SEM) and quantitatively using the Alamar blue assay. GST was the least soluble and also released the lowest concentration of ions following immersion in water. Of the modified compositions, GC5 demonstrated intermediate solubility but the greatest ion release while GP2 exhibited the highest solubility. This was most likely due to GC5 having the greatest proportion of residual glass following crystallisation. The mass loss exhibited by GP2 may have been due in part to the partial disintegration of the surface of specimens during solubility testing. SEM demonstrated that all compositions supported the growth of healthy ROS cells on their surfaces, and this data was further supported by the quantitative Alamar blue assay.
Materials Science and Engineering: C | 2017
Y. Ryabenkova; A. Pinnock; P.A. Quadros; Rebecca L. Goodchild; Günter Möbus; Aileen Crawford; Paul V. Hatton; Cheryl A. Miller
Biomaterials composed of hydroxyapatite (HA) are currently used for the treatment of bone defects resulting from trauma or surgery. However, hydroxyapatite supplied in the form of a paste is considered a very convenient medical device compared to the materials where HA powder and liquid need to be mixed immediately prior to the bone treatment during surgery. In this study we have tested a series of hydroxyapatite (HA) pastes with varying microstructure and different rheological behaviour to evaluate their injectability and biocompatibility. The particle morphology and chemical composition were evaluated using HRTEM, XRD and FTIR. Two paste-types were compared, with the HA particles of both types being rod shaped with a range of sizes between 20 and 80nm while differing in the particle aspect ratio and the degree of roundness or sharpness. The pastes were composed of pure HA phase with low crystallinity. The rheological properties were evaluated and it was determined that the pastes behaved as shear-thinning, non-Newtonian liquids. The difference in viscosity and yield stress between the two pastes was investigated. Surprisingly, mixing of these pastes at different ratios did not alter viscosity in a linear manner, providing an opportunity to produce a specific viscosity by mixing the two materials with different characteristics. Biocompatibility studies suggested that there was no difference in vitro cell response to either paste for primary osteoblasts, bone marrow mesenchymal stromal cells, osteoblast-like cells, and fibroblast-like cells. This class of nanostructured biomaterial has significant potential for use as an injectable bone graft substitute where the properties may be tailored for different clinical indications.
Scientific Reports | 2017
Veronika Hruschka; Stefan Tangl; Yulia Ryabenkova; Patrick Heimel; Dirk Barnewitz; Günter Möbus; Claudia Keibl; James L. Ferguson; Paulo Quadros; Cheryl A. Miller; Rebecca L. Goodchild; Wayne Austin; Heinz Redl; Thomas Nau
Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim® (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study.