Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chi-Dung Yang is active.

Publication


Featured researches published by Chi-Dung Yang.


Nucleic Acids Research | 2016

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

Chih-Hung Chou; Nai-Wen Chang; Sirjana Shrestha; Sheng-Da Hsu; Yu-Ling Lin; Wei-Hsiang Lee; Chi-Dung Yang; Hsiao-Chin Hong; Ting-Yen Wei; Siang-Jyun Tu; Tzi-Ren Tsai; Shu-Yi Ho; Ting-Yan Jian; Hsin-Yi Wu; Pin-Rong Chen; Nai-Chieh Lin; Hsin-Tzu Huang; Tzu-Ling Yang; Chung-Yuan Pai; Chun-San Tai; Wen-Liang Chen; Chia-Yen Huang; Chun-Chi Liu; Shun-Long Weng; Kuang-Wen Liao; Wen-Lian Hsu; Hsien-Da Huang

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.


Nucleic Acids Research | 2009

sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes

Hsi-Yuan Huang; Heng-Yi Chang; Chih-Hung Chou; Ching-Ping Tseng; Shinn-Ying Ho; Chi-Dung Yang; Yih-Wei Ju; Hsien-Da Huang

Small non-coding RNAs (sRNAs) carry out a variety of biological functions and affect protein synthesis and protein activities in prokaryotes. Recently, numerous sRNAs and their targets were identified in Escherichia coli and in other bacteria. It is crucial to have a comprehensive resource concerning the annotation of small non-coding RNAs in microbial genomes. This work presents an integrated database, namely sRNAMap, to collect the sRNA genes, the transcriptional regulators of sRNAs and the sRNA target genes by integrating a variety of biological databases and by surveying literature. In this resource, we collected 397 sRNAs, 62 regulators/sRNAs and 60 sRNAs/targets in 70 microbial genomes. Additionally, more valuable information of the sRNAs, such as the secondary structure of sRNAs, the expressed conditions of sRNAs, the expression profiles of sRNAs, the transcriptional start sites of sRNAs and the cross-links to other biological databases, are provided for further investigation. Besides, various textual and graphical interfaces were designed and implemented to facilitate the data access in sRNAMap. sRNAMap is available at http://sRNAMap.mbc.nctu.edu.tw/.


Nucleic Acids Research | 2018

miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions

Chih-Hung Chou; Sirjana Shrestha; Chi-Dung Yang; Nai-Wen Chang; Yu-Ling Lin; Kuang-Wen Liao; Wei-Chih Huang; Ting-Hsuan Sun; Siang-Jyun Tu; Wei-Hsiang Lee; Men-Yee Chiew; Chun-San Tai; Ting-Yen Wei; Tzi-Ren Tsai; Hsin-Tzu Huang; Chung-Yu Wang; Hsin-Yi Wu; Shu-Yi Ho; Pin-Rong Chen; Cheng-Hsun Chuang; Pei-Jung Hsieh; Yi-Shin Wu; Wen-Liang Chen; Meng-Ju Li; Yu-chun Wu; Xin-Yi Huang; Fung Ling Ng; Waradee Buddhakosai; Pei-Chun Huang; Kuan-Chun Lan

Abstract MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 22 nucleotides that are involved in negative regulation of mRNA at the post-transcriptional level. Previously, we developed miRTarBase which provides information about experimentally validated miRNA-target interactions (MTIs). Here, we describe an updated database containing 422 517 curated MTIs from 4076 miRNAs and 23 054 target genes collected from over 8500 articles. The number of MTIs curated by strong evidence has increased ∼1.4-fold since the last update in 2016. In this updated version, target sites validated by reporter assay that are available in the literature can be downloaded. The target site sequence can extract new features for analysis via a machine learning approach which can help to evaluate the performance of miRNA-target prediction tools. Furthermore, different ways of browsing enhance user browsing specific MTIs. With these improvements, miRTarBase serves as more comprehensively annotated, experimentally validated miRNA-target interactions databases in the field of miRNA related research. miRTarBase is available at http://miRTarBase.mbc.nctu.edu.tw/.


Molecular Microbiology | 2014

CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication

Chi-Dung Yang; Yen-Hua Chen; Hsi-Yuan Huang; Hsien-Da Huang; Ching-Ping Tseng

The CRISPR/Cas system is an important aspect in bacterial immunology. The anti‐phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose‐containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)‐mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR‐mediated repression of phage P1 replication. Trans‐expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.


Journal of Bacteriology | 2011

Negative Effect of Glucose on ompA mRNA Stability: a Potential Role of Cyclic AMP in the Repression of hfq in Escherichia coli

Hsiao-Hsien Lin; Chi-Cheng Hsu; Chi-Dung Yang; Yih-Wei Ju; Yi-Pei Chen; Ching-Ping Tseng

Glucose is a carbon source that is capable of modulating the level of cyclic AMP (cAMP)-regulated genes. In the present study, we found that the stability of ompA mRNA was reduced in Escherichia coli when glucose (40 mM) was present in Luria-Bertani (LB) medium. This effect was associated with a low level of cAMP induced by the glucose. The results were confirmed with an adenylyl cyclase mutant with low levels of cAMP that are not modulated by glucose. Northern blot and Western blot analyses revealed that the host factor I (Hfq) (both mRNA and protein) levels were downregulated in the presence of cAMP. Furthermore, we showed that a complex of cAMP receptor protein (CRP) and cAMP binds to a specific P3(hfq) promoter region of hfq and regulates hfq expression. The regulation of the hfq gene was confirmed in vivo using an hfq-deficient mutant transformed with an exogenous hfq gene containing the promoter. These results demonstrated that expression of hfq was repressed by the CRP-cAMP complex. The presence of glucose resulted in increased Hfq protein levels, which decreased ompA mRNA stability. An additional experiment showed that cAMP also increased the stability of fur mRNA. Taken together, these results suggested that the repression of Hfq by cAMP may contribute to the stability of other mRNA in E. coli.


Journal of Microbiology | 2012

Regulatory Role of cAMP Receptor Protein over Escherichia coli Fumarase Genes

Yu-Pei Chen; Hsiao-Hsien Lin; Chi-Dung Yang; Shin-Hong Huang; Ching-Ping Tseng

Escherichia coli expresses three fumarase genes, namely, fumA, fumB, and fumC. In the present study, catabolite repression was observed in the fumA-lacZ and fumC-lacZ fusion strains, but not in the fumB-lacZ fusion strain. The Crp-binding sites in fumA and fumC were identified using an electrophoretic mobility shift assay and footprint analysis. However, the electrophoretic mobility shift assay did not detect band shifts in fumB. Fnr and ArcA serve as transcription regulators of fumarase gene expression. In relation to this, different mutants, including Δcya, Δcrp, Δfnr, and ΔarcA, were used to explore the regulatory role of Crp over fumA and fumC. The results show that Crp is an activator of fumA and fumC gene expression under various oxygen conditions and growth rates. ArcA was identified as the dominant repressor, with the major repression occurring at 0–4% oxygen. In addition, Fnr was confirmed as a repressor of fumC for the first time. This study elucidates the effects of Crp on fumarase gene expression.


Bioinformatics | 2015

GeNOSA: inferring and experimentally supporting quantitative gene regulatory networks in prokaryotes

Yi-Hsiung Chen; Chi-Dung Yang; Ching-Ping Tseng; Hsien-Da Huang; Shinn-Ying Ho

MOTIVATION The establishment of quantitative gene regulatory networks (qGRNs) through existing network component analysis (NCA) approaches suffers from shortcomings such as usage limitations of problem constraints and the instability of inferred qGRNs. The proposed GeNOSA framework uses a global optimization algorithm (OptNCA) to cope with the stringent limitations of NCA approaches in large-scale qGRNs. RESULTS OptNCA performs well against existing NCA-derived algorithms in terms of utilization of connectivity information and reconstruction accuracy of inferred GRNs using synthetic and real Escherichia coli datasets. For comparisons with other non-NCA-derived algorithms, OptNCA without using known qualitative regulations is also evaluated in terms of qualitative assessments using a synthetic Saccharomyces cerevisiae dataset of the DREAM3 challenges. We successfully demonstrate GeNOSA in several applications including deducing condition-dependent regulations, establishing high-consensus qGRNs and validating a sub-network experimentally for dose-response and time-course microarray data, and discovering and experimentally confirming a novel regulation of CRP on AscG. AVAILABILITY AND IMPLEMENTATION All datasets and the GeNOSA framework are freely available from http://e045.life.nctu.edu.tw/GeNOSA. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Scientific Reports | 2018

PredCRP: predicting and analysing the regulatory roles of CRP from its binding sites in Escherichia coli

Ming-Ju Tsai; Jyun-Rong Wang; Chi-Dung Yang; Kuo-Ching Kao; Wen-Lin Huang; Hsi-Yuan Huang; Ching-Ping Tseng; Hsien-Da Huang; Shinn-Ying Ho

Cyclic AMP receptor protein (CRP), a global regulator in Escherichia coli, regulates more than 180 genes via two roles: activation and repression. Few methods are available for predicting the regulatory roles from the binding sites of transcription factors. This work proposes an accurate method PredCRP to derive an optimised model (named PredCRP-model) and a set of four interpretable rules (named PredCRP-ruleset) for predicting and analysing the regulatory roles of CRP from sequences of CRP-binding sites. A dataset consisting of 169 CRP-binding sites with regulatory roles strongly supported by evidence was compiled. The PredCRP-model, using 12 informative features of CRP-binding sites, and cooperating with a support vector machine achieved a training and test accuracy of 0.98 and 0.93, respectively. PredCRP-ruleset has two activation rules and two repression rules derived using the 12 features and the decision tree method C4.5. This work further screened and identified 23 previously unobserved regulatory interactions in Escherichia coli. Using quantitative PCR for validation, PredCRP-model and PredCRP-ruleset achieved a test accuracy of 0.96 (=22/23) and 0.91 (=21/23), respectively. The proposed method is suitable for designing predictors for regulatory roles of all global regulators in Escherichia coli. PredCRP can be accessed at https://github.com/NctuICLab/PredCRP.


International Journal of Molecular Sciences | 2017

Integrated MicroRNA–mRNA Analysis Reveals miR-204 Inhibits Cell Proliferation in Gastric Cancer by Targeting CKS1B, CXCL1 and GPRC5A

Sirjana Shrestha; Chi-Dung Yang; Hsiao-Chin Hong; Chih-Hung Chou; Chun-San Tai; Men-Yee Chiew; Wen-Liang Chen; Shun-Long Weng; Chung-Chu Chen; Yi-An Chang; Meng-Lin Lee; Wei-Yun Huang; Sheng-Da Hsu; Yi-Chang Chen; Hsien-Da Huang

Gastric cancer (GC) is the second most frequent cause of cancer-related deaths worldwide. MicroRNAs are single-stranded RNA molecules of 21–23 nucleotides that regulate target gene expression through specific base-pairing interactions between miRNA and untranslated regions of targeted mRNAs. In this study, we generated a multistep approach for the integrated analysis of miRNA and mRNA expression. First, both miRNA and mRNA expression profiling datasets in gastric cancer from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) identified 79 and 1042 differentially expressed miRNAs and mRNAs, respectively, in gastric cancer. Second, inverse correlations between miRNA and mRNA expression levels identified 3206 miRNA–mRNA pairs combined with 79 dysregulated miRNAs and their 774 target mRNAs predicted by three prediction tools, miRanda, PITA, and RNAhybrid. Additionally, miR-204, which was found to be down-regulated in gastric cancer, was ectopically over-expressed in the AGS gastric cancer cell line and all down-regulated targets were identified by RNA sequencing (RNA-seq) analysis. Over-expression of miR-204 reduced the gastric cancer cell proliferation and suppressed the expression of three targets which were validated by qRT-PCR and luciferase assays. For the first time, we identified that CKS1B, CXCL1, and GPRC5A are putative targets of miR-204 and elucidated that miR-204 acted as potential tumor suppressor and, therefore, are useful as a promising therapeutic target for gastric cancer.


Computational Biology and Chemistry | 2017

Gene expression profiling of tumor-associated macrophages after exposure to single-dose irradiation

Wei-Hsiang Kung; Ching-Fang Yu; Andy Chi-Lung Lee; Chi-Dung Yang; Yu-Chen Liu; Fang-Hsin Chen; Hsien-Da Huang

Radiotherapy (RT) is a common cancer treatment approach that accounts for nearly 50% of patient treatment; however, tumor relapse after radiotherapy is still a major issue. To study the crucial role of tumor-associated macrophages (TAMs) in the regulation of tumor progression post-RT, microarray experiments comparing TAM gene expression profiles between unirradiated and irradiated tumors were conducted to discover possible roles of TAMs in initiation or contribution to tumor recurrence following RT, taking into account the relationships among gene expression, tumor microenvironment, and immunology. A single dose of 25Gy was given to TRAMP C-1 prostate tumors established in C57/B6 mice. CD11b-positive macrophages were extracted from the tumors at one, two and three weeks post-RT. Gene ontology (GO) term analysis using the DAVID database revealed that genes that were differentially expressed at one and two weeks after irradiation were associated with biological processes such as morphogenesis of a branching structure, tube development, and cell proliferation. Analysis using Short Time-Series Expression Miner (STEM) revealed the temporal gene expression profiles and identified 13 significant patterns in four main groups of profiles. The genes in the upregulated temporal profile have diverse functions involved in the intracellular signaling cascade, cell proliferation, and cytokine-mediated signaling pathway. We show that tumor irradiation with a single 25-Gy dose can initiate a time-series of differentially expressed genes in TAMs, which are associated with the immune response, DNA repair, cell cycle arrest, and apoptosis. Our study helps to improve our understanding of the function of the group of genes whose expression changes temporally in an irradiated tumor microenvironment.

Collaboration


Dive into the Chi-Dung Yang's collaboration.

Top Co-Authors

Avatar

Hsien-Da Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ching-Ping Tseng

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hsi-Yuan Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Sirjana Shrestha

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chih-Hung Chou

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chun-San Tai

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hsiao-Chin Hong

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hsin-Tzu Huang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Men-Yee Chiew

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Shinn-Ying Ho

National Chiao Tung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge