Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia-Yu Lee is active.

Publication


Featured researches published by Chia-Yu Lee.


ACS Nano | 2013

Non-antireflective Scheme for Efficiency Enhancement of Cu(In,Ga)Se2 Nanotip Array Solar Cells

Yu-Kuang Liao; Yi-Chung Wang; Yu-Ting Yen; Chia-Hsiang Chen; Dan-Hua Hsieh; Shih-Chen Chen; Chia-Yu Lee; Chih-Chung Lai; Wei-Chen Kuo; Jenh-Yi Juang; Kaung-Hsiung Wu; Shun-Jen Cheng; Chih-Huang Lai; Fang-I Lai; Shou-Yi Kuo; Hao-Chung Kuo; Yu-Lun Chueh

We present systematic works in characterization of CIGS nanotip arrays (CIGS NTRs). CIGS NTRs are obtained by a one-step ion-milling process by a direct-sputtering process of CIGS thin films (CIGS TF) without a postselenization process. At the surface of CIGS NTRs, a region extending to 100 nm in depth with a lower copper concentration compared to that of CIGS TF has been discovered. After KCN washing, removal of secondary phases can be achieved and a layer with abundant copper vacancy (V(Cu)) was left. Such compositional changes can be a benefit for a CIGS solar cell by promoting formation of Cd-occupied Cu sites (Cd(Cu)) at the CdS/CIGS interface and creates a type-inversion layer to enhance interface passivation and carrier extraction. The raised V(Cu) concentration and enhanced Cd diffusion in CIGS NTRs have been verified by energy dispersive spectrometry. Strengthened adhesion of Al:ZnO (AZO) thin film on CIGS NTRs capped with CdS has also been observed in SEM images and can explain the suppressed series resistance of the device with CIGS NTRs. Those improvements in electrical characteristics are the main factors for efficiency enhancement rather than antireflection.


Optics Express | 2014

Improvement of emission uniformity by using micro-cone patterned PDMS film

Che-Yu Liu; Kuo-Ju Chen; Da-Wei Lin; Chia-Yu Lee; Chien-Chung Lin; Shih-Hsuan Chien; Min-Hsiung Shih; Gou-Chung Chi; Chun-Yen Chang; Hao-Chung Kuo

Micro-patterned PDMS film was fabricated and combined with LED chip on board (COB) package to improve the emission uniformity of LED chip. The micro scale patterned sapphire substrate (PSS) was used as a mold to fabricate micro-cone patterned PDMS (MC-PDMS) film. A strong scattering effect from this MC-PDMS film can be verified by the high haze ratio and the Bi-directional Transmission effect. The angle dependent color temperature measurement system was used to measure the ΔCCT of COB with and without MC-PDMS. The measurement results indicate that the ΔCCT was reduced from 1025K to 428K. This improvement can effectively eliminate the yellow ring effect of LED chip. This technology can be thus considered as a cost-effective way for the next generation of light source packages.


Applied Physics Letters | 2012

Efficiency and droop improvement in green InGaN/GaN light-emitting diodes on GaN nanorods template with SiO2 nanomasks

Da-Wei Lin; Chia-Yu Lee; Che-Yu Liu; Hau-Vei Han; Yu-Pin Lan; Chien-Chung Lin; Gou-Chung Chi; Hao-Chung Kuo

This study presents the green InGaN/GaN multiple quantum wells light-emitting diodes (LEDs) grown on a GaN nanorods template with SiO2 nanomasks by metal–organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth, microscale air voids were formed between nanorods and the threading dislocations were efficiently suppressed. The electroluminescence measurement reveals that the LEDs on nanorods template with SiO2 nanomasks suffer less quantum-confined Stark effect and exhibit higher light output power and lower efficiency droop at a high injection current as compared with conventional LEDs.


IEEE\/OSA Journal of Display Technology | 2013

Enhanced Light Output Power and Growth Mechanism of GaN-Based Light-Emitting Diodes Grown on Cone-Shaped

Da-Wei Lin; Jhih-Kai Huang; Chia-Yu Lee; Ruey-Wen Chang; Yu-Pin Lan; Chien-Chung Lin; Kang-Yuan Lee; Chung-Hsiang Lin; Po-Tsung Lee; Gou-Chung Chi; Hao-Chung Kuo

In this study, we successfully transferred the patterns of a cone-shaped patterned sapphire substrate (CPSS) into SiO2 layer to fabricate a cone-shaped SiO2 patterned template by using nanoimprint lithography (NIL). The GaN-based light-emitting diodes (LEDs) were grown on this template by metal-organic chemical vapor deposition (MOCVD). The transmission electron microscopy (TEM) images suggest that the stacking faults formed near the cone-shaped SiO2 patterns during the epitaxial lateral overgrowth (ELOG) can effectively suppress the threading dislocations, which results in an enhancement of internal quantum efficiency. The Monte Carlo ray-tracing simulation reveals that the light extraction efficiency of the LED grown on cone-shaped SiO2 patterned template can be enhanced as compared with the LED grown on CPSS. As a result, the light output power of the LED grown on cone-shaped SiO2 patterned template outperformed the LED grown on CPSS.


IEEE Journal of Quantum Electronics | 2014

{\hbox{SiO}}_{2}

Zhen-Yu Li; Chia-Yu Lee; Da-Wei Lin; Bing-Cheng Lin; Kun-Ching Shen; Ching-Hsueh Chiu; Po-Min Tu; Hao-Chung Kuo; Wu-Yih Uen; Ray-Hua Horng; Gou-Chung Chi; Chun-Yen Chang

In this paper, a composite buffer layer structure (CBLS) with multiple AlGaN layers and grading of Al composition/u-GaN1/(AlN/GaN) superlattices/u-GaN2 and InAlGaN/AlGaN quaternary superlattices electron-blocking layers (QSLs-EBLs) are introduced into the epitaxial growth of InGaN-based light-emitting diodes (LEDs) on 6-inch Si (111) substrates to suppress cracking and improve the crystalline quality and emission efficiency. The effect of CBLS and QSLs-EBL on the crystalline quality and emission efficiency of InGaN-based LEDs on Si substrates was studied in detail. Optical microscopic images revealed the absence of cracks and Ga melt-back etching. The atomic force microscopy images exhibited that the root-mean-square value of the surface morphology was only 0.82 nm. The full widths at half maxima of the (0002) and (101̅2) reflections in the double crystal X-ray rocking curve were ~330 and 450 respectively. The total threading dislocation density, revealed by transmission electron microscopy, was <; 6× 108 cm-2. From the material characterizations, described above, blue and white LEDs emitters were fabricated using the epiwafers of InGaN-based LEDs on 6-inch Si substrates. The blue LEDs emitter that comprised blue LEDs chip and clear lenses had an emission power of 490 mW at 350 mA, a wall-plug efficiency of 45% at 350 mA, and an efficiency droop of 80%. The white LEDs emitter that comprised blue LEDs chip and yellow phosphor had an emission efficiency of ~110 lm/W at 350 mA and an efficiency droop of 78%. These results imply that the use of a CBLS and QSLs-EBL was found to be very simple and effective in fabricating high-efficiency InGaN-based LEDs on Si for solid-state lighting applications.


IEEE Photonics Technology Letters | 2012

Patterned Template

Ching-Hsueh Chiu; Lung-Hsing Hsu; Chia-Yu Lee; Chien-Chung Lin; Bo-Wen Lin; Shang-Ju Tu; Yan-Hao Chen; Che-Yu Liu; Wen-Ching Hsu; Yu-Pin Lan; Jinn-Kong Sheu; Tien-Chang Lu; Gou-Chung Chi; Hao-Chung Kuo; Shing-Chung Wang; Chun-Yen Chang

In this letter, we report the high performance GaN-based light-emitting diodes (LEDs) with embedded air void array grown by metal-organic chemical vapor deposition. The donut-shaped air void was formed at the interface between crown-shaped patterned sapphire substrates (CPSS) and the GaN epilayer by conventional photolithography. The transmission electron microscopy images demonstrate that the threading dislocations were significantly suppressed by epitaxial lateral overgrowth (ELOG). The Monte Carlo ray-tracing simulation reveals that the light extraction of the air-voids embedded LED was dramatically increased due to a strong light reflection and redirection by the air voids.


Journal of Photonics for Energy | 2015

High-Efficiency and Crack-Free InGaN-Based LEDs on a 6-inch Si (111) Substrate With a Composite Buffer Layer Structure and Quaternary Superlattices Electron-Blocking Layers

An-Jye Tzou; Bing-Cheng Lin; Chia-Yu Lee; Da-Wei Lin; Yu-Kuang Liao; Zhen-Yu Li; Gou-Chung Chi; Hao-Chung Kuo; Chun-Yen Chang

Abstract. Crack-free GaN-based light-emitting diodes (LEDs) were grown on 150-mm-diameter Si substrates by using low-pressure metal-organic chemical vapor deposition. The relationship between the LED devices and the thickness of quantum barriers (QBs) was investigated. The crystal quality and surface cracking of GaN-on-Si were greatly improved by an AlxGa1−xN buffer layer composed of graded Al. The threading dislocation density of the GaN-on-Si LEDs was reduced to <7×108  cm−2, yielding LEDs with high internal quantum efficiency. Simulation results indicated that reducing the QB thickness improved the carrier injection rate and distribution, thereby improving the droop behavior of the LEDs. LEDs featuring 6-nm-thick QBs exhibited the lowest droop behavior. However, the experimental results showed an unanticipated phenomenon, namely that the peak external quantum efficiency (EQE) and light output power (LOP) gradually decreased with a decreasing QB thickness. In other words, the GaN-on-Si LEDs with 8-nm-thick QBs exhibited low droop behavior and yielded a good peak EQE and LOP, achieving a 22.9% efficiency droop and 54.6% EQE.


Applied Physics Express | 2014

Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Crown-Shaped Patterned Sapphire Substrates

Chia-Yu Lee; Yu-Pin Lan; Po-Min Tu; Shih-Chieh Hsu; Chien-Chung Lin; Hao-Chung Kuo; Gou-Chung Chi; Chun-Yen Chang

Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm−2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.


conference on lasers and electro optics | 2014

Efficiency droop behavior improvement through barrier thickness modification for GaN-on-silicon light-emitting diodes

Kuo-Ju Chen; Bing-Cheng Lin; Hau-Vei Han; Chien-Chung Lin; Chia-Yu Lee; Shih-Hsuan Chien; Kuan-Yu Wang; Sheng-Huan Chiu; Teng-Ming Chen; Min-Hsiung Shih; Hao-Chung Kuo; S. C. Wang

This study demonstrated the high CRI and excellent uniformity colloidal quantum dot white-light-emitting diodes with the DBR structure at different correlated color temperature from 2500 K to 4500K.


Proceedings of SPIE | 2014

Natural substrate lift-off technique for vertical light-emitting diodes

Sheng-Wen Wang; Da-Wei Lin; Chia-Yu Lee; Chien-Chung Lin; Hao-Chung Kuo

We use thinner-quantum well to improve the droop behavior of GaN-base light emitting diode in simulation. Taking the advantage of that the thin quantum well will saturate easily, this characteristic of thin well will improve carrier distribution. Furthermore, this structure has more wave-function overlap than that of the thick well. This simulation result showed that decreasing the well thickness in specific position will not only improve the holes transport but also increase the quantum efficiency at high current density in the active region, and the efficiency droop behavior can be effectively suppressed. In this research, we designed three thin well structures by inserting different numbers of thin wells in the active region. We have compared them to the conventional LEDs, for which, the well thickness of 2.5 nm is used. The thin well structures have better droop behavior than conventional LED.

Collaboration


Dive into the Chia-Yu Lee's collaboration.

Top Co-Authors

Avatar

Hao-Chung Kuo

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chien-Chung Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Gou-Chung Chi

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chun-Yen Chang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Da-Wei Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ching-Hsueh Chiu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Yu-Pin Lan

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Che-Yu Liu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Bing-Cheng Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

J.-Y. Lin

National Chung Cheng University

View shared research outputs
Researchain Logo
Decentralizing Knowledge