Chiara Andolina
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Andolina.
Malaria Journal | 2014
Nicholas J. White; Elizabeth A. Ashley; Judith Recht; Michael J. Delves; Andrea Ruecker; Frank Smithuis; Alice C Eziefula; Teun Bousema; Chris Drakeley; Kesinee Chotivanich; Mallika Imwong; Sasithon Pukrittayakamee; Jetsumon Prachumsri; Cindy S. Chu; Chiara Andolina; Germana Bancone; Tran Tinh Hien; Mayfong Mayxay; Walter Rj Taylor; Lorenz von Seidlein; Ric N. Price; Karen I. Barnes; Abdoulaye A. Djimde; Feiko O. ter Kuile; Roly Gosling; Ingrid Chen; Mehul Dhorda; Kasia Stepniewska; Philippe J Guerin; Charles J. Woodrow
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
eLife | 2017
Giulia Manzoni; Carine Marinach; Selma Topçu; Sylvie Briquet; Morgane Grand; Matthieu Tolle; Marion Gransagne; Julien Lescar; Chiara Andolina; Jean-François Franetich; Mirjam B. Zeisel; Thierry Huby; Eric Rubinstein; Georges Snounou; Dominique Mazier; François Nosten; Thomas F. Baumert; Olivier Silvie
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors. DOI: http://dx.doi.org/10.7554/eLife.25903.001
The Lancet | 2018
Jordi Landier; Daniel M. Parker; Aung Myint Thu; Khin Maung Lwin; Gilles Delmas; François Nosten; Chiara Andolina; Ricardo Aguas; Saw Moe Ang; Ei Phyo Aung; Naw Baw Baw; Saw Aye Be; Saw B'Let; Hay Bluh; Craig A. Bonnington; Victor Chaumeau; Miasa Chirakiratinant; Win Cho Cho; Peter R. Christensen; Vincent Corbel; Nicholas P. J. Day; Saw Hsa Dah; Mehul Dhorda; Arjen M. Dondorp; Jean Gaudart; Gornpan Gornsawun; Warat Haohankhunnatham; Saw Kyaw Hla; Saw Nay Hsel; Saw Nay Htoo
Summary Background Potentially untreatable Plasmodium falciparum malaria threatens the Greater Mekong subregion. A previous series of pilot projects in Myanmar, Laos, Cambodia, and Vietnam suggested that mass drug administration was safe, and when added to provision of early diagnosis and treatment, could reduce the reservoir of P falciparum and interrupts transmission. We examined the effects of a scaled-up programme of this strategy in four townships of eastern Myanmar on the incidence of P falciparum malaria. Methods The programme was implemented in the four townships of Myawaddy, Kawkareik, Hlaingbwe, and Hpapun in Kayin state, Myanmar. Increased access to early diagnosis and treatment of malaria was provided to all villages through community-based malaria posts equipped with rapid diagnostic tests, and treatment with artemether–lumefantrine plus single low-dose primaquine. Villages were identified as malarial hotspots (operationally defined as >40% malaria, of which 20% was P falciparum) with surveys using ultrasensitive quantitative PCR either randomly or targeted at villages where the incidence of clinical cases of P falciparum malaria remained high (ie, >100 cases per 1000 individuals per year) despite a functioning malaria post. During each survey, a 2 mL sample of venous blood was obtained from randomly selected adults. Hotspots received targeted mass drug administration with dihydroartemisinin–piperaquine plus single-dose primaquine once per month for 3 consecutive months in addition to the malaria posts. The main outcome was the change in village incidence of clinical P falciparum malaria, quantified using a multivariate, generalised, additive multilevel model. Malaria prevalence was measured in the hotspots 12 months after mass drug administration. Findings Between May 1, 2014, and April 30, 2017, 1222 malarial posts were opened, providing early diagnosis and treatment to an estimated 365 000 individuals. Incidence of P falciparum malaria decreased by 60 to 98% in the four townships. 272 prevalence surveys were undertaken and 69 hotspot villages were identified. By April 2017, 50 hotspots were treated with mass drug administration. Hotspot villages had a three times higher incidence of P falciparum at malarial posts than neighbouring villages (adjusted incidence rate ratio [IRR] 2·7, 95% CI 1·8–4·4). Early diagnosis and treatment was associated with a significant decrease in P falciparum incidence in hotspots (IRR 0·82, 95% CI 0·76–0·88 per quarter) and in other villages (0·75, 0·73–0·78 per quarter). Mass drug administration was associated with a five-times decrease in P falciparum incidence within hotspot villages (IRR 0·19, 95% CI 0·13–0·26). By April, 2017, 965 villages (79%) of 1222 corresponding to 104 village tracts were free from P falciparum malaria for at least 6 months. The prevalence of wild-type genotype for K13 molecular markers of artemisinin resistance was stable over the three years (39%; 249/631). Interpretation Providing early diagnosis and effective treatment substantially decreased village-level incidence of artemisinin-resistant P falciparum malaria in hard-to-reach, politically sensitive regions of eastern Myanmar. Targeted mass drug administration significantly reduced malaria incidence in hotspots. If these activities could proceed in all contiguous endemic areas in addition to standard control programmes already implemented, there is a possibility of subnational elimination of P falciparum. Funding The Bill & Melinda Gates Foundation, the Regional Artemisinin Initiative (Global Fund against AIDS, Tuberculosis and Malaria), and the Wellcome Trust.
PLOS ONE | 2016
Victor Chaumeau; Chiara Andolina; Benedicte Fustec; N. Tuikue Ndam; Cécile Brengues; Stéphane Herder; Dominique Cerqueira; Theeraphap Chareonviriyaphap; François Nosten; Vincent Corbel
Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies.
Nature Communications | 2018
Alison Roth; Steven P. Maher; Amy J. Conway; Ratawan Ubalee; Victor Chaumeau; Chiara Andolina; Stephen A. Kaba; Amélie Vantaux; Malina A. Bakowski; Richard Thomson-Luque; Swamy R. Adapa; Naresh Singh; Samantha J. Barnes; Caitlin A. Cooper; Mélanie Rouillier; Case W. McNamara; Sebastian A. Mikolajczak; Noah Sather; Benoit Witkowski; Brice Campo; Stefan H. I. Kappe; David E. Lanar; François Nosten; Silas A. Davidson; Rays H. Y. Jiang; Dennis E. Kyle; John H. Adams
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.Currently available platforms to study liver stage of Plasmodium species have limitations. Here, the authors show that primary human hepatocyte cultures in 384-well format support hypnozoite and other liver stage development and are suitable for drug and antibody screens.
Parasites & Vectors | 2017
Victor Chaumeau; Dominique Cerqueira; John Zadrozny; Praphan Kittiphanakun; Chiara Andolina; Theeraphap Chareonviriyaphap; François Nosten; Vincent Corbel
BackgroundThere is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area.MethodsAnopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July 2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%). DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides.ResultsA total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n = 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus (75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91) and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was detected only in An. peditaeniatus (Hyrcanus Group).ConclusionResistance to pyrethroids is present along the Thailand-Myanmar border, and it represents a threat for malaria vector control. Further investigations are needed to better understand the molecular basis of insecticide resistance in malaria vectors in this area.
Scientific Reports | 2018
Tarsila Mendes de Camargo; Elisângela Oliveira de Freitas; Alba Marina Gimenez; Luciana Lima; Karina de Almeida Caramico; Kátia Sanches Françoso; Oscar Bruna-Romero; Chiara Andolina; François Nosten; Laurent Rénia; Hildegund C.J. Ertl; Ruth S. Nussenzweig; Victor Nussenzweig; Mauricio M. Rodrigues; Arturo Reyes-Sandoval; Irene S. Soares
Vaccine development against Plasmodium vivax malaria lags behind that for Plasmodium falciparum. To narrow this gap, we administered recombinant antigens based on P. vivax circumsporozoite protein (CSP) to mice. We expressed in Pichia pastoris two chimeric proteins by merging the three central repeat regions of different CSP alleles (VK210, VK247, and P. vivax-like). The first construct (yPvCSP-AllFL) contained the fused repeat regions flanked by N- and C-terminal regions. The second construct (yPvCSP-AllCT) contained the fused repeat regions and the C-terminal domain, plus RI region. Mice were vaccinated with three doses of yPvCSP in adjuvants Poly (I:C) or Montanide ISA720. We also used replication-defective adenovirus vectors expressing CSP of human serotype 5 (AdHu5) and chimpanzee serotype 68 (AdC68) for priming mice which were subsequently boosted twice with yPvCSP proteins in Poly (I:C) adjuvant. Regardless of the regime used, immunized mice generated high IgG titres specific to all CSP alleles. After challenge with P. berghei ANKA transgenic parasites expressing Pb/PvVK210 or Pb/PvVK247 sporozoites, significant time delays for parasitemia were observed in all vaccinated mice. These vaccine formulations should be clinically tried for their potential as protective universal vaccine against P. vivax malaria.
Nature Communications | 2018
Evelien M. Bunnik; Kate Cook; Nelle Varoquaux; Gayani Batugedara; Jacques Prudhomme; Anthony Cort; Lirong Shi; Chiara Andolina; Leila S Ross; Declan Brady; David A. Fidock; François Nosten; Rita Tewari; Photini Sinnis; Ferhat Ay; Jean-Philippe Vert; William Stafford Noble; Karine G. Le Roch
The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.The development of malaria parasites is controlled by coordinated changes in gene expression. Here, the authors show that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycles of Plasmodium falciparum and Plasmodium vivax parasites.
Malaria Journal | 2017
Sook-Cheng Pang; Chiara Andolina; Benoit Malleret; Peter R. Christensen; Sai-Gek Lam-Phua; Muhammad Aliff Bin Abdul Razak; Chee-Seng Chong; Daiqin Li; Cindy S. Chu; Bruce Russell; Laurent Rénia; Lee Ching Ng; François Nosten
BackgroundSingapore has been certified malaria-free by the World Health Organization since November 1982. However, sporadic autochthonous malaria outbreaks do occur. In one of the most recent outbreaks of vivax malaria, an entomological investigation identified Anopheles sinensis as the most probable vector. As metaphase karyotype studies divided An. sinensis into two forms, A and B, with different vector competence: the investigation of vector competence of An. sinensis found in Singapore was thus pursued using Plasmodium vivax field isolates from the Thailand–Myanmar border.MethodsAdults and larvae An. sinensis were collected from Singapore from 14 different locations, using various trapping and collection methods between September 2013 and January 2016. Molecular identification of An. sinensis species were conducted by amplifying the ITS2 and CO1 region using PCR. Experimental infections of An. sinensis using blood from seven patients infected with P. vivax from the Thailand–Myanmar border were conducted with Anopheles cracens (An. dirus B) as control.ResultsPhylogenetic analysis showed that An. sinensis (F22, F2 and collected from outbreak areas) found in Singapore was entirely Form A, and closely related to An. sinensis Form A from Thailand. Artificial infection of these Singapore strain An. sinensis Form A resulted in the development of oocysts in four experiments, with the number of sporozoites produced by one An. sinensis ranging from 4301 to 14,538.ConclusionsInfection experiments showed that An. sinensis Form A from Singapore was susceptible to Thai–Myanmar P. vivax strain, suggesting a potential role as a malaria vector in Singapore.
Frontiers in Immunology | 2017
Alba Marina Gimenez; Luciana Lima; Kátia Sanches Françoso; Priscila Martins Andrade Denapoli; Raquel Hoffmann Panatieri; Daniel Y. Bargieri; Jean-Michel Thiberge; Chiara Andolina; François Nosten; Laurent Rénia; Ruth S. Nussenzweig; Victor Nussenzweig; Rogerio Amino; Mauricio M. Rodrigues; Irene S. Soares
Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.