Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Stringari is active.

Publication


Featured researches published by Chiara Stringari.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue

Chiara Stringari; Amanda Cinquin; Olivier Cinquin; Michelle A. Digman; Peter J. Donovan; Enrico Gratton

We describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH. We have exploited the cell phasor approach to detect a trend in metabolite concentrations along the main axis of the Caenorhabditis elegans germ line. This trend is consistent with known changes in metabolic states during differentiation. The cell phasor approach to lifetime imaging provides a label-free, fit-free, and sensitive method to identify different metabolic states of cells during differentiation, to sense small changes in the redox state of cells, and may identify symmetric and asymmetric divisions and predict cell fate. Our method is a promising noninvasive optical tool for monitoring metabolic pathways during differentiation or disease progression, and for cell sorting in unlabeled tissues.


The EMBO Journal | 2014

Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer

Kira T. Pate; Chiara Stringari; Stephanie Sprowl-Tanio; Kehui Wang; Tara Teslaa; Nate P. Hoverter; Miriam McQuade; Chad P. Garner; Michelle A. Digman; Michael A. Teitell; Robert A. Edwards; Enrico Gratton; Marian L. Waterman

Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β‐catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt‐inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt‐driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients.


Scientific Reports | 2012

Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH

Chiara Stringari; Robert A. Edwards; Kira T. Pate; Marian L. Waterman; Peter J. Donovan; Enrico Gratton

There is a lack of fast and high resolution methods to measure metabolic activity of single cells in their native environment. Here we develop a straightforward, non-invasive and sensitive method to measure metabolic phenotype of single cells in a live tissue. By using NADH as optical biomarker and the phasor approach to Fluorescence Lifetime microscopy (FLIM) we identify cellular metabolic fingerprints related to different rates of oxidative phosphorylation and glycolysis. For the first time we measure a three dimensional metabolic gradient in the small intestine (SI) epithelia that appears tightly associated with epithelial cell proliferation, differentiation and the Wnt gradient. The highest free/bound NADH ratios are measured at the base of the crypt within the highly proliferative stem cells, indicating high levels of glycolysis. For the first time mouse small intestinal stem cells in intact live crypts are identified within the tissue by their metabolic fingerprint.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Probing myosin structural conformation in vivo by second-harmonic generation microscopy

V. Nucciotti; Chiara Stringari; Leonardo Sacconi; Francesco Vanzi; Luca Fusi; Marco Linari; Gabriella Piazzesi; Vincenzo Lombardi; Francesco S. Pavone

Understanding of complex biological processes requires knowledge of molecular structures and measurement of their dynamics in vivo. The collective chemomechanical action of myosin molecules (the molecular motors) in the muscle sarcomere represents a paradigmatic example in this respect. Here, we describe a label-free imaging method sensitive to protein conformation in vivo. We employed the order-based contrast enhancement by second-harmonic generation (SHG) for the functional imaging of muscle cells. We found that SHG polarization anisotropy (SPA) measurements report on the structural state of the actomyosin motors, with significant sensitivity to the conformation of myosin. In fact, each physiological/biochemical state we probed (relaxed, rigor, isometric contraction) produced a distinct value of polarization anisotropy. Employing a full reconstruction of the contributing elementary SHG emitters in the actomyosin motor array at atomic scale, we provide a molecular interpretation of the SPA measurements in terms of myosin conformations. We applied this method to the discrimination between attached and detached myosin heads in an isometrically contracting intact fiber. Our observations indicate that isometrically contracting muscle sustains its tetanic force by steady-state commitment of 30% of myosin heads. Applying SPA and molecular structure modeling to the imaging of unstained living tissues provides the basis for a generation of imaging and diagnostic tools capable of probing molecular structures and dynamics in vivo.


PLOS ONE | 2012

Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential

Chiara Stringari; Jamison L. Nourse; Lisa A. Flanagan; Enrico Gratton

In the stem cell field there is a lack of non invasive and fast methods to identify stem cell’s metabolic state, differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate, prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio, while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential, showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential, while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel, and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors.


Journal of Biomedical Optics | 2012

Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

Chiara Stringari; Robert Sierra; Peter J. Donovan; Enrico Gratton

We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.


Biophysical Journal | 2012

NADH Distribution in Live Progenitor Stem Cells by Phasor-Fluorescence Lifetime Image Microscopy

Belinda K. Wright; Laura M. Andrews; Julie L. Markham; Mark R. Jones; Chiara Stringari; Michelle A. Digman; Enrico Gratton

NADH is a naturally fluorescent metabolite associated with cellular respiration. Exploiting the different fluorescence lifetime of free and bound NADH has the potential to quantify the relative amount of bound and free NADH, enhancing understanding of cellular processes including apoptosis, cancer pathology, and enzyme kinetics. We use the phasor-fluorescence lifetime image microscopy approach to spatially map NADH in both the free and bound forms of live undifferentiated and differentiated myoblast cells. The phasor approach graphically depicts the change in lifetime at a pixel level without the requirement for fitting the decay. Comparison of the spatial distribution of NADH in the nucleus of cells induced to differentiate through serum starvation and undifferentiated cells show differing distributions of bound and free NADH. Undifferentiated cells displayed a short lifetime indicative of free NADH in the nucleus and a longer lifetime attributed to the presence of bound NADH outside of the nucleus. Differentiating cells displayed redistribution of free NADH with decreased relative concentration of free NADH within the nucleus whereas the majority of NADH was found in the cytoplasm.


Journal of Biomedical Optics | 2012

Deep tissue fluorescence imaging and in vivo biological applications.

Viera Crosignani; Alexander S. Dvornikov; Jose S. Aguilar; Chiara Stringari; Robert A. Edwards; William W. Mantulin; Enrico Gratton

Abstract. We describe a novel technical approach with enhanced fluorescence detection capabilities in two-photon microscopy that achieves deep tissue imaging, while maintaining micron resolution. Compared to conventional two-photon microscopy, greater imaging depth is achieved by more efficient harvesting of fluorescence photons propagating in multiple-scattering media. The system maintains the conventional two-photon microscopy scheme for excitation. However, for fluorescence collection the detection system harvests fluorescence photons directly from a wide area of the turbid sample. The detection scheme relies on a wide area detector, minimal optical components and an emission path bathed in a refractive-index-matching fluid that minimizes emission photon losses. This detection scheme proved to be very efficient, allowing us to obtain high resolution images at depths up to 3 mm. This technique was applied to in vivo imaging of the murine small intestine (SI) and colon. The challenge is to image normal and diseased tissue in the whole live animal, while maintaining high resolution imaging at millimeter depth. In Lgr5-GFP mice, we have been successful in imaging Lgr5-eGFP positive stem cells, present in SI and colon crypt bases.


Journal of Biomedical Optics | 2012

Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

Tatiana B. Krasieva; Chiara Stringari; Feng Liu; Chung-Ho Sun; Yu Kong; Mihaela Balu; Frank L. Meyskens; Enrico Gratton; Bruce J. Tromberg

Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000  nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.


Microscopy Research and Technique | 2012

Phasor‐flim analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells

Belinda K. Wright; Laura M. Andrews; Mark R. Jones; Chiara Stringari; Michelle A. Digman; Enrico Gratton

Analysis of the cellular distributions of coenzymes including NADH may aid in understanding a cells metabolic status. We altered serum concentration (0, 2, and 10%) to induce living myoblast cells to undergo the early stages of differentiation. Through microscopy and phasor‐FLIM, we spatially mapped and identified variations in the distribution of free and bound NADH. Undifferentiated cells displayed abundant free NADH within the nucleus along with specific regions of more bound NADH. Complete serum starvation dramatically increased the fraction of bound NADH in the nucleus, indicating heightened requirement for transcriptional processes. In comparison, cells exposed to 2% serum exhibited intermediate free nuclear NADH fraction. Overall our results suggest an order of events in which a cell metabolic status alters significantly during the early stages of serum induced differentiation. Microsc. Res. Tech. 2012.

Collaboration


Dive into the Chiara Stringari's collaboration.

Top Co-Authors

Avatar

Enrico Gratton

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kira T. Pate

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge