Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih-Jen Wei is active.

Publication


Featured researches published by Chih-Jen Wei.


Science Translational Medicine | 2010

Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design

Chih-Jen Wei; Jeffrey C. Boyington; Kaifan Dai; Katherine V. Houser; Melissa B. Pearce; Wing-Pui Kong; Zhi-Yong Yang; Terrence M. Tumpey; Gary J. Nabel

The 1918 and 2009 pandemic influenza viruses are both inhibited by antibodies directed to an exposed region of the viral spike, but this region becomes shielded by glycans in influenza seasonal strains. Remembrance of Flus Past For those who hate needles, this past winter was not a good one. Not only did we have to get the usual seasonal flu shot, doctors recommended that we also get a second shot against another type of flu, a pandemic virus called 2009 H1N1. As the U.S. Centers for Disease Control warned, “A seasonal vaccine will not protect you against 2009 H1N1.” Also odd was the fact that the 2009 H1N1 pandemic flu seemed to spare older people; those age 65 and older were not considered at high risk as they are for seasonal flu. Wei et al. have now worked out why the 2009 H1N1 pandemic flu has these properties, showing how the virus is different from seasonal flu virus but similar to the pandemic flu that swept the globe in 1918. The authors injected mice with seasonal flu viruses as well as with pandemic viruses from 1918 and 2009. The resulting antibodies raised in the mice could inhibit both pandemic viruses in culture and protected mice from infection with either 2009 or 1918 pandemic flu. Antibodies raised to the seasonal flu virus did not have this protective effect, although they protected against seasonal flu perfectly well. In investigating why, Wei et al. found that the key inhibitory antibodies raised to the pandemic flu strains bound to the exposed top of the spike protein, a molecule that projects from the virus and helps it to infect host cells. This immunogenic part of the spike is very similar in the 1918 and 2009 pandemic viruses. Even more interesting is how the seasonal flu escapes from these antibodies. Its spike protein has two sites, not present in the pandemic flu spike protein, to which sugar groups are added, shielding the seasonal flu spike protein from inhibition by the antibodies that act against the pandemic strains. Pandemic flu viruses evolve into seasonal flu varieties, and the authors suggest that one of the key evolutionary steps is the acquisition of the sites for sugar groups on the spike protein. These changes allow the virus to infect people with preexisting immunity to pandemic flu. The results of Wei et al. may also explain the relative resistance of older people to the present flu pandemic: Persistent immunity to the 1918 flu or its close relatives from childhood may inhibit the unprotected spike protein of the current 2009 pandemic flu virus and, thus, its ability to infect host cells. New strains of H1N1 influenza virus have emerged episodically over the last century to cause human pandemics, notably in 1918 and recently in 2009. Pandemic viruses typically evolve into seasonal forms that develop resistance to antibody neutralization, and cross-protection between strains separated by more than 3 years is uncommon. Here, we define the structural basis for cross-neutralization between two temporally distant pandemic influenza viruses—from 1918 and 2009. Vaccination of mice with the 1918 strain protected against subsequent lethal infection by 2009 virus. Both were resistant to antibodies directed against a seasonal influenza, A/New Caledonia/20/1999 (1999 NC), which was insensitive to antisera to the pandemic strains. Pandemic strain–neutralizing antibodies were directed against a subregion of the hemagglutinin (HA) receptor binding domain that is highly conserved between the 1918 and the 2009 viruses. In seasonal strains, this region undergoes amino acid diversification but is shielded from antibody neutralization by two highly conserved glycosylation sites absent in the pandemic strains. Pandemic HA trimers modified by glycosylation at these positions were resistant to neutralizing antibodies to wild-type HA. Yet, antisera generated against the glycosylated HA mutant neutralized it, suggesting that the focus of the immune response can be selectively changed with this modification. Collectively, these findings define critical determinants of H1N1 viral evolution and have implications for vaccine design. Immunization directed to conserved receptor binding domain subregions of pandemic viruses could potentially protect against similar future pandemic viruses, and vaccination with glycosylated 2009 pandemic virus may limit its further spread and transformation into a seasonal influenza.


Lancet Infectious Diseases | 2011

DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials

Julie E. Ledgerwood; Chih-Jen Wei; Zonghui Hu; Ingelise J. Gordon; Mary E. Enama; Cynthia S. Hendel; Patrick M. McTamney; Melissa B. Pearce; Hadi M. Yassine; Jeffrey C. Boyington; Robert T. Bailer; Terrence M. Tumpey; Richard A. Koup; John R. Mascola; Gary J. Nabel; Barney S. Graham

Summary Background Because the general population is largely naive to H5N1 influenza, antibodies generated to H5 allow analysis of novel influenza vaccines independent of background immunity from previous infection. We assessed the safety and immunogenicity of DNA encoding H5 as a priming vaccine to improve antibody responses to inactivated influenza vaccination. Methods In VRC 306 and VRC 310, two sequentially enrolled phase 1, open-label, randomised clinical trials, healthy adults (age 18–60 years) were randomly assigned to receive intramuscular H5 DNA (4 mg) at day 0 or twice, at day 0 and week 4, followed by H5N1 monovalent inactivated vaccine (MIV; 90 μg) at 4 or 24 weeks, and compared with a two-dose regimen of H5N1 MIV with either a 4 or 24 week interval. Antibody responses were assessed by haemagglutination inhibition (HAI), ELISA, neutralisation (ID80), and immunoassays for stem-directed antibodies. T cell responses were assessed by intracellular cytokine staining. After enrolment, investigators and individuals were not masked to group assignment. VRC 306 and VRC 310 are registered with ClinicalTrials.gov, numbers NCT00776711 and NCT01086657, respectively. Findings In VRC 306, 60 individuals were randomly assigned to the four groups (15 in each) and 59 received the vaccinations. In VRC 310, of the 21 individuals enrolled, 20 received the vaccinations (nine received a two-dose regimen of H5N1 MIV and 11 received H5 DNA at day 0 followed by H5N1 MIV at week 24). H5 DNA priming was safe and enhanced H5-specific antibody titres following an H5N1 MIV boost, especially when the interval between DNA prime and MIV boost was extended to 24 weeks. In the two studies, DNA priming with a 24-week MIV boost interval induced protective HAI titres in 21 (81%) of 26 of individuals, with an increase in geometric mean titre (GMT) of more than four times that of individuals given the MIV-MIV regimen at 4 or 24 weeks (GMT 103–206 vs GMT 27–33). Additionally, neutralising antibodies directed to the conserved stem region of H5 were induced by this prime-boost regimen in several individuals. No vaccine-related serious adverse events were recorded. Interpretation DNA priming 24 weeks in advance of influenza vaccine boosting increased the magnitude of protective antibody responses (HAI) and in some cases induced haemagglutinin-stem-specific neutralising antibodies. A DNA-MIV vaccine regimen could enhance the efficacy of H5 or other influenza vaccines and shows that anti-stem antibodies can be elicited by vaccination in man. Funding National Institutes of Health.


Journal of Virology | 2008

Comparative Efficacy of Neutralizing Antibodies Elicited by Recombinant Hemagglutinin Proteins from Avian H5N1 Influenza Virus

Chih-Jen Wei; Ling Xu; Wing-Pui Kong; Wei Shi; Kevin Canis; James Stevens; Zhi-Yong Yang; Anne Dell; Stuart M. Haslam; Ian A. Wilson; Gary J. Nabel

ABSTRACT Although the human transmission of avian H5N1 virus remains low, the prevalence of this highly pathogenic infection in avian species underscores the need for a preventive vaccine that can be made without eggs. Here, we systematically analyze various forms of recombinant hemagglutinin (HA) protein for their potential efficacy as vaccines. Monomeric, trimeric, and oligomeric H5N1 HA proteins were expressed and purified from either insect or mammalian cells. The immunogenicity of different recombinant HA proteins was evaluated by measuring the neutralizing antibody response. Neutralizing antibodies to H5N1 HA were readily generated in mice immunized with the recombinant HA proteins, but they varied in potency depending on their multimeric nature and cell source. Among the HA proteins, a high-molecular-weight oligomer elicited the strongest antibody response, followed by the trimer; the monomer showed minimal efficacy. The coexpression of another viral surface protein, neuraminidase, did not affect the immunogenicity of the HA oligomer, as expected from the immunogenicity of trimers produced from insect cells. As anticipated, HA expressed in mammalian cells without NA retained the terminal sialic acid residues and failed to bind α2,3-linked sialic acid receptors. Taken together, these results suggest that recombinant HA proteins as individual or oligomeric trimers can elicit potent neutralizing antibody responses to avian H5N1 influenza viruses.


Nature | 2012

Structural and genetic basis for development of broadly neutralizing influenza antibodies

Daniel Lingwood; Patrick McTamney; Hadi M. Yassine; James R. R. Whittle; Xiaoti Guo; Jeffrey C. Boyington; Chih-Jen Wei; Gary J. Nabel

Influenza viruses take a yearly toll on human life despite efforts to contain them with seasonal vaccines. These viruses evade human immunity through the evolution of variants that resist neutralization. The identification of antibodies that recognize invariant structures on the influenza haemagglutinin (HA) protein have invigorated efforts to develop universal influenza vaccines. Specifically, antibodies to the highly conserved stem region of HA neutralize diverse viral subtypes. These antibodies largely derive from a specific antibody gene, heavy-chain variable region IGHV1-69, after limited affinity maturation from their germline ancestors, but how HA stimulates naive B cells to mature and induce protective immunity is unknown. To address this question, we analysed the structural and genetic basis for their engagement and maturation into broadly neutralizing antibodies. Here we show that the germline-encoded precursors of these antibodies act as functional B-cell antigen receptors (BCRs) that initiate subsequent affinity maturation. Neither the germline precursor of a prototypic antibody, CR6261 (ref. 3), nor those of two other natural human IGHV1-69 antibodies, bound HA as soluble immunoglobulin-G (IgG). However, all three IGHV1-69 precursors engaged HA when the antibody was expressed as cell surface IgM. HA triggered BCR-associated tyrosine kinase signalling by germline transmembrane IgM. Recognition and virus neutralization was dependent solely on the heavy chain, and affinity maturation of CR6261 required only seven amino acids in the complementarity-determining region (CDR) H1 and framework region 3 (FR3) to restore full activity. These findings provide insight into the initial events that lead to the generation of broadly neutralizing antibodies to influenza, informing the rational design of vaccines to elicit such antibodies and providing a model relevant to other infectious diseases, including human immunodeficiency virus/AIDS. The data further suggest that selected immunoglobulin genes recognize specific protein structural ‘patterns’ that provide a substrate for further affinity maturation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination

Wing-Pui Kong; Chantelle Hood; Zhi-Yong Yang; Chih-Jen Wei; Ling Xu; Adolfo García-Sastre; Terrence M. Tumpey; Gary J. Nabel

The remarkable infectivity and virulence of the 1918 influenza virus resulted in an unprecedented pandemic, raising the question of whether it is possible to develop protective immunity to this virus and whether immune evasion may have contributed to its spread. Here, we report that the highly lethal 1918 virus is susceptible to immune protection by a preventive vaccine, and we define its mechanism of action. Immunization with plasmid expression vectors encoding hemagglutinin (HA) elicited potent CD4 and CD8 cellular responses as well as neutralizing antibodies. Antibody specificity and titer were defined by a microneutralization and a pseudotype assay that could assess antibody specificity without the need for high-level biocontainment. This pseudotype inhibition assay can define evolving serotypes of influenza viruses and facilitate the development of immune sera and neutralizing monoclonal antibodies that may help contain pandemic influenza. Notably, mice vaccinated with 1918 HA plasmid DNAs showed complete protection to lethal challenge. T cell depletion had no effect on immunity, but passive transfer of purified IgG from anti-H1(1918) immunized mice provided protective immunity for naïve mice challenged with infectious 1918 virus. Thus, humoral immunity directed at the viral HA can protect against the 1918 pandemic virus.


PLOS ONE | 2008

Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

Srinivas S. Rao; Wing-Pui Kong; Chih-Jen Wei; Zhi-Yong Yang; Martha Nason; Darrel Styles; Louis J. DeTolla; Aruna Panda; Erin M. Sorrell; Haichen Song; Hongquan Wan; Gloria Ramirez-Nieto; Daniel R. Perez; Gary J. Nabel

Background Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses. Methodology / Principal Findings The ability of DNA vaccines encoding hemagglutinin (HA) proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 µg DNA given twice either by intramuscular needle injection or with a needle-free device. Conclusions/Significance DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.


Science Translational Medicine | 2012

Elicitation of Broadly Neutralizing Influenza Antibodies in Animals with Previous Influenza Exposure

Chih-Jen Wei; Hadi M. Yassine; Patrick M. McTamney; Jason G. D. Gall; James R. R. Whittle; Jeffrey C. Boyington; Gary J. Nabel

Broadly neutralizing antibodies to influenza can be elicited by vaccination in animals previously infected or immunized by the virus. Stemming the Flu Shot Every year, the influenza virus gets a makeover so remarkable our immune systems barely recognize it. The virus mutates its surface antigens, which make it possible to evade immune attack even in people who have suffered flu in previous years. Yet, some parts of the surface antigen hemagglutinin (HA)—such as the stem region—are critical for infection and thus conserved. Consequently, scientists have targeted this region in strategies to build a universal vaccine. Unfortunately, the lack of widespread natural immunity to the stem region raises red flags about the efficacy of this method: What if previous immunity prevents the induction of broadly protective antibodies? Wei et al. now find that in mice and ferrets, neither previous infection nor previous vaccination prevents the induction of broadly neutralizing antibody responses. The authors primed mice with a DNA vaccine and then boosted with inactive influenza and found that HA stem–directed antibodies were elicited regardless of preexposure route. In ferrets, prime-boost with adenoviral vectors conferred protection against influenza challenge. Indeed, immunogenicity was actually enhanced in animals previously exposed to a divergent flu strain. Although these studies must be translated to humans, the new data suggest that administration of a successful universal flu vaccine won’t be restricted to people who have never before been exposed to the virus. The immune system responds to influenza infection by producing neutralizing antibodies to the viral surface protein, hemagglutinin (HA), which regularly changes its antigenic structure. Antibodies that target the highly conserved stem region of HA neutralize diverse influenza viruses and can be elicited through vaccination in animals and humans. Efforts to develop universal influenza vaccines have focused on strategies to elicit such antibodies; however, the concern has been raised that previous influenza immunity may abrogate the induction of such broadly protective antibodies. We show here that prime-boost immunization can induce broadly neutralizing antibody responses in influenza-immune mice and ferrets that were previously infected or vaccinated. HA stem–directed antibodies were elicited in mice primed with a DNA vaccine and boosted with inactivated vaccine from H1N1 A/New Caledonia/20/1999 (1999 NC) HA regardless of preexposure. Similarly, gene-based vaccination with replication-defective adenovirus 28 (rAd28) and 5 (rAd5) vectors encoding 1999 NC HA elicited stem-directed neutralizing antibodies and conferred protection against unmatched 1934 and 2007 H1N1 virus challenge in influenza-immune ferrets. Indeed, previous exposure to certain strains could enhance immunogenicity: The strongest HA stem–directed immune response was observed in ferrets previously infected with a divergent 1934 H1N1 virus. These findings suggest that broadly neutralizing antibodies against the conserved stem region of HA can be elicited through vaccination despite previous influenza exposure, which supports the feasibility of developing stem-directed universal influenza vaccines for humans.


Nature | 2011

Vaccinate for the next H2N2 pandemic now

Gary J. Nabel; Chih-Jen Wei; Julie E. Ledgerwood

An old influenza strain still circulating in birds and swine could easily jump back to humans now that immunity to it has dropped, warn Gary J. Nabel and his colleagues.


Science | 2007

Immunization by Avian H5 Influenza Hemagglutinin Mutants with Altered Receptor Binding Specificity

Zhi-Yong Yang; Chih-Jen Wei; Wing-Pui Kong; Lan Wu; Ling Xu; David F. Smith; Gary J. Nabel


Archive | 2009

Dna prime/inactivated vaccine boost immunization to influenza virus

Gary J. Nabel; Chih-Jen Wei; Zhi-Yong Yang

Collaboration


Dive into the Chih-Jen Wei's collaboration.

Top Co-Authors

Avatar

Wing-Pui Kong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey C. Boyington

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhi-Yong Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hadi M. Yassine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Srinivas S. Rao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Tumpey

National Center for Immunization and Respiratory Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge