Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih-Lin Hsieh is active.

Publication


Featured researches published by Chih-Lin Hsieh.


Nature | 1999

Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene

Guoliang Xu; Timothy H. Bestor; Déborah Bourc'his; Chih-Lin Hsieh; Niels Tommerup; Merete Bugge; Maj Hulten; Xiaoyan Qu; James J. Russo; Evani Viegas‐Péquignot

The recessive autosomal disorder known as ICF syndrome (for immunodeficiency, centromere instability and facial anomalies; Mendelian Inheritance in Man number 242860) is characterized by variable reductions in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood. Mild facial anomalies include hypertelorism, low-set ears, epicanthal folds and macroglossia. The cytogenetic abnormalities in lymphocytes are exuberant: juxtacentromeric heterochromatin is greatly elongated and thread-like in metaphase chromosomes, which is associated with the formation of complex multiradiate chromosomes. The same juxtacentromeric regions are subject to persistent interphase self-associations and are extruded into nuclear blebs or micronuclei. Abnormalities are largely confined to tracts of classical satellites 2 and 3 at juxtacentromeric regions of chromosomes 1, 9 and 16. Classical satellite DNA is normally heavily methylated at cytosine residues, but in ICF syndrome it is almost completely unmethylated in all tissues. ICF syndrome is the only genetic disorder known to involve constitutive abnormalities of genomic methylation patterns. Here we show that five unrelated ICF patients have mutations in both alleles of the gene that encodes DNA methyltransferase 3B (refs 5, 6). Cytosine methylation is essential for the organization and stabilization of a specific type of heterochromatin, and this methylation appears to be carried out by an enzyme specialized for the purpose.


Cell | 2008

Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts

Ping Li; Chang Tong; Ruty Mehrian-Shai; Li Jia; Nancy Wu; Youzhen Yan; Robert Maxson; Eric N. Schulze; Houyan Song; Chih-Lin Hsieh; Martin F. Pera; Qi-Long Ying

Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.


Nature Immunology | 2003

R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells

Kefei Yu; Frédéric Chédin; Chih-Lin Hsieh; Thomas E. Wilson; Michael R. Lieber

The mechanism responsible for immunoglobulin class switch recombination is unknown. Previous work has shown that class switch sequences have the unusual property of forming RNA-DNA hybrids when transcribed in vitro. Here we show that the RNA-DNA hybrid structure that forms in vitro is an R-loop with a displaced guanine (G)-rich strand that is single-stranded. This R-loop structure exists in vivo in B cells that have been stimulated to transcribe the γ3 or the γ2b switch region. The length of the R-loops can exceed 1 kilobase. We propose that this distinctive DNA structure is important in the class switch recombination mechanism


Proceedings of the National Academy of Sciences of the United States of America | 2002

The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a

Frédéric Chédin; Michael R. Lieber; Chih-Lin Hsieh

Dnmt3L is required for the establishment of maternal methylation imprints at imprinting centers (ICs). Dnmt3L, however, lacks the conserved catalytic domain common to DNA methyltransferases. In an attempt to define its function, we coexpressed DNMT3L with each of the two known de novo methyltransferases, Dnmt3a and DNMT3B, in human cells and monitored de novo methylation by using replicating minichromosomes carrying various ICs as targets. Coexpression of DNMT3L with DNMT3B led to little or no change in target methylation. However, coexpression of DNMT3L with Dnmt3a resulted in a striking stimulation of de novo methylation by Dnmt3a. Stimulation was observed at maternally methylated ICs such as small nuclear ribonucleoprotein polypeptide N (SNRPN), Snrpn, and Igf2r/Air, as well as at various nonimprinted sequences present on the episomes. Stimulation of Dnmt3a by DNMT3L was also observed at endogenous sequences in the genome. Therefore, DNMT3L acts as a general stimulatory factor for de novo methylation by Dnmt3a. The implications of these findings for the function of DNMT3L and Dnmt3a in DNA methylation and genomic imprinting are discussed.


Molecular and Cellular Biology | 1994

Dependence of transcriptional repression on CpG methylation density.

Chih-Lin Hsieh

CpG methylation is known to suppress transcription. This repression is generally thought to be related to alterations of chromatin structure that are specified by the methylation. The nature of these chromatin alterations is unknown. Moreover, it has not been clear if the methylation repression occurs in an all-or-none fashion at some critical methylation density, or if intermediate densities of methylation can give intermediate levels of repression. Here I report a stable episomal system which recapitulates many dynamic features of methylation observed in the genome. I have determined the extent of transcriptional repression as a function of four densities of CpG methylation. I find that the repression is a graded but exponential function of the CpG methylation density such that low levels of methylation yield a 67 to 90% inhibition of gene expression. Higher levels of methylation extinguished gene expression completely. Transcription from methylated minichromosomes can be increased by butyrate treatment, suggesting that histone acetylation can reverse some of the repression specified by the methylated state. Sites of preferential demethylation occurred and may have resulted from transcription factor binding or DNA looping.


Molecular and Cellular Biology | 1999

In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b.

Chih-Lin Hsieh

ABSTRACT The putative de novo methyltransferases, Dnmt3a and Dnmt3b, were reported to have weak methyltransferase activity in methylating the 3′ long terminal repeat of Moloney murine leukemia virus in vitro. The activity of these enzymes was evaluated in vivo, using a stable episomal system that employs plasmids as targets for DNA methylation in human cells. De novo methylation of a subset of the CpG sites on the stable episomes is detected in human cells overexpressing the murine Dnmt3a or Dnmt3b1 protein. This de novo methylation activity is abolished when the cysteine in the P-C motif, which is the catalytic site of cytosine methyltransferases, is replaced by a serine. The pattern of methylation on the episome is nonrandom, and different regions of the episome are methylated to different extents. Furthermore, Dnmt3a also methylates the sequence methylated by Dnmt3a on the stable episome in the corresponding chromosomal target. Overexpression of human DNMT1 or murine Dnmt3b does not lead to the same pattern or degree of de novo methylation on the episome as overexpression of murine Dnmt3a. This finding suggests that these three enzymes may have different targets or requirements, despite the fact that weak de novo methyltransferase activity has been demonstrated in vitro for all three enzymes. It is also noteworthy that both Dnmt3a and Dnmt3b proteins coat the metaphase chromosomes while displaying a more uniform pattern in the nucleus. This is the first evidence that Dnmt3a and Dnmt3b have de novo methyltransferase function in vivo and the first indication that the Dnmt3a and Dnmt3b proteins may have preferred target sites.


Nature | 2004

A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex

Sathees C. Raghavan; Patrick C. Swanson; Xlantuo Wu; Chih-Lin Hsieh; Michael R. Lieber

The causes of spontaneous chromosomal translocations in somatic cells of biological organisms are largely unknown, although double-strand DNA breaks are required in all proposed mechanisms. The most common chromosomal abnormality in human cancer is the reciprocal translocation between chromosomes 14 and 18 (t(14;18)), which occurs in follicular lymphomas. The break at the immunoglobulin heavy-chain locus on chromosome 14 is an interruption of the normal V(D)J recombination process. But the breakage on chromosome 18, at the Bcl-2 gene, occurs within a confined 150-base-pair region (the major breakpoint region or Mbr) for reasons that have remained enigmatic. We have reproduced key features of the translocation process on an episome that propagates in human cells. The RAG complex—which is the normal enzyme for DNA cleavage at V, D or J segments—nicks the Bcl-2 Mbr in vitro and in vivo in a manner that reflects the pattern of the chromosomal translocations; however, the Mbr is not a V(D)J recombination signal. Rather the Bcl-2 Mbr assumes a non-B-form DNA structure within the chromosomes of human cells at 20–30% of alleles. Purified DNA assuming this structure contains stable regions of single-strandedness, which correspond well to the translocation regions in patients. Hence, a stable non-B-DNA structure in the human genome appears to be the basis for the fragility of the Bcl-2 Mbr, and the RAG complex is able to cleave this structure.


Cell | 2008

Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for Their Lineage and Stage Specificity

Albert G. Tsai; Haihui Lu; Sathees C. Raghavan; Markus Müschen; Chih-Lin Hsieh; Michael R. Lieber

We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using this database, we show that although the CpG dinucleotide constitutes only 1% of the human genome, it accounts for 40%-70% of breakpoints at pro-B/pre-B stage translocation regions-specifically, those near the bcl-2, bcl-1, and E2A genes. We do not observe CpG hotspots in rearrangements involving lymphoid-myeloid progenitors, mature B cells, or T cells. The stage specificity, lineage specificity, CpG targeting, and unique breakpoint distributions at these cluster regions may be explained by a lesion-specific double-strand breakage mechanism involving the RAG complex acting at AID-deaminated methyl-CpGs.


Journal of Cellular Biochemistry | 2005

Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family.

Zhao-Xia Chen; Jeffrey R. Mann; Chih-Lin Hsieh; Arthur D. Riggs; Frédéric Chédin

The de novo methyltransferase‐like protein, DNMT3L, is required for methylation of imprinted genes in germ cells. Although enzymatically inactive, human DNMT3L was shown to act as a general stimulatory factor for de novo methylation by murine Dnmt3a. Several isoforms of DNMT3A and DNMT3B with development‐stage and tissue‐specific expression patterns have been described in mouse and human, thus bringing into question the identity of the physiological partner(s) for stimulation by DNMT3L. Here, we used an episome‐based in vivo methyltransferase assay to systematically analyze five isoforms of human DNMT3A and DNMT3B for activity and stimulation by human DNMT3L. Our results show that human DNMT3A, DNMT3A2, DNMT3B1, and DNMT3B2 are catalytically competent, while DNMT3B3 is inactive in our assay. We also report that the activity of all four active isoforms is significantly increased upon co‐expression with DNMT3L, albeit to varying extents. This is the first comprehensive description of the in vivo activities of the poorly characterized human DNMT3A and DNMT3B isoforms and of their functional interactions with DNMT3L. To further elucidate the mechanism by which DNMT3L stimulates DNA methylation, we have mapped in detail the domains that mediate interaction of human DNMT3L with human DNMT3A and DNMT3B. Our results show that the C‐terminus of DNMT3L is the only region required for interaction with DNMT3A and DNMT3B and that interaction takes place through the C‐terminal catalytic domain of DNMT3A and DNMT3B. The implications of these findings for the regulation of de novo methyltransferases and genomic imprinting are discussed. This article contains Supplementary Material available at http://www.mrw.interscience.wiley.com/suppmat/0730‐2312/suppmat/2005/95/chen.html.


Current Biology | 2002

Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants

Zarir E. Karanjawala; Niamh Murphy; David R. Hinton; Chih-Lin Hsieh; Michael R. Lieber

Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.

Collaboration


Dive into the Chih-Lin Hsieh's collaboration.

Top Co-Authors

Avatar

Michael R. Lieber

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy Yen Okitsu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Janet L. Stanford

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kefei Yu

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine A. Ostrander

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ethan M. Lange

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Iping G. Lin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zarir E. Karanjawala

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge