Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chinatsu Yamada is active.

Publication


Featured researches published by Chinatsu Yamada.


The EMBO Journal | 2012

Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice

Takeya Minami; Koichiro Kuwahara; Yasuaki Nakagawa; Minoru Takaoka; Hideyuki Kinoshita; K. Nakao; Yoshihiro Kuwabara; Yuko Yamada; Chinatsu Yamada; Junko Shibata; Satoru Usami; Shinji Yasuno; Toshio Nishikimi; Kenji Ueshima; Masataka Sata; Hiroyasu Nakano; Takahiro Seno; Yutaka Kawahito; Kenji Sobue; Akinori Kimura; Ryozo Nagai; Kazuwa Nakao

Myocardin‐related transcription factor (MRTF)‐A is a Rho signalling‐responsive co‐activator of serum response factor (SRF). Here, we show that induction of MRTF‐A expression is key to pathological vascular remodelling. MRTF‐A expression was significantly higher in the wire‐injured femoral arteries of wild‐type mice and in the atherosclerotic aortic tissues of ApoE−/− mice than in healthy control tissues, whereas myocardin expression was significantly lower. Both neointima formation in wire‐injured femoral arteries in MRTF‐A knockout (Mkl1−/−) mice and atherosclerotic lesions in Mkl1−/−; ApoE−/− mice were significantly attenuated. Expression of vinculin, matrix metallopeptidase 9 (MMP‐9) and integrin β1, three SRF targets and key regulators of cell migration, in injured arteries was significantly weaker in Mkl1−/− mice than in wild‐type mice. In cultured vascular smooth muscle cells (VSMCs), knocking down MRTF‐A reduced expression of these genes and significantly impaired cell migration. Underlying the increased MRTF‐A expression in dedifferentiated VSMCs was the downregulation of microRNA‐1. Moreover, the MRTF‐A inhibitor CCG1423 significantly reduced neointima formation following wire injury in mice. MRTF‐A could thus be a novel therapeutic target for the treatment of vascular diseases.


PLOS ONE | 2013

Direct Immunochemiluminescent Assay for proBNP and Total BNP in Human Plasma proBNP and Total BNP Levels in Normal and Heart Failure

Toshio Nishikimi; Hiroyuki Okamoto; Masahiro Nakamura; Naoko Ogawa; Kazukiyo Horii; Kiyoshi Nagata; Yasuaki Nakagawa; Hideyuki Kinoshita; Chinatsu Yamada; K. Nakao; Takeya Minami; Yoshihiro Kuwabara; Koichiro Kuwahara; Izuru Masuda; Kenji Kangawa; Naoto Minamino; Kazuwa Nakao

Background Recent studies have shown that in addition to brain (or B-type) natriuretic peptide (BNP) and the N-terminal proBNP fragment, levels of intact proBNP are also increased in heart failure. Moreover, present BNP immunoassays also measure proBNP, as the anti-BNP antibody cross-reacts with proBNP. It is important to know the exact levels of proBNP in heart failure, because elevation of the low-activity proBNP may be associated with the development of heart failure. Methodology/Principal Findings We therefore established a two-step immunochemiluminescent assay for total BNP (BNP+proBNP) and proBNP using monoclonal antibodies and glycosylated proBNP as a standard. The assay enables measurement of plasma total BNP and proBNP within only 7 h, without prior extraction of the plasma. The detection limit was 0.4 pmol/L for a 50-µl plasma sample. Within-run CVs ranged from 5.2%–8.0% in proBNP assay and from 7.0%–8.4% in total BNP assay, and between-run CVs ranged from 5.3–7.4% in proBNP assay and from 2.9%–9.5% in total BNP assay, respectively. The dilution curves for plasma samples showed good linearity (correlation coefficientsu200a=u200a0.998–1.00), and analytical recovery was 90–101%. The mean total BNP and proBNP in plasma from 116 healthy subjects were 1.4±1.2 pM and 1.0±0.7 pM, respectively, and were 80±129 pM and 42±70 pM in 32 heart failure patients. Plasma proBNP levels significantly correlate with age in normal subjects. Conclusions/Significance Our immunochemiluminescent assay is sufficiently rapid and precise for routine determination of total BNP and proBNP in human plasma.


Journal of the American Heart Association | 2013

Increased Expression of HCN Channels in the Ventricular Myocardium Contributes to Enhanced Arrhythmicity in Mouse Failing Hearts

Yoshihiro Kuwabara; Koichiro Kuwahara; Makoto Takano; Hideyuki Kinoshita; Yuji Arai; Shinji Yasuno; Yasuaki Nakagawa; Sachiyo Igata; Satoru Usami; Takeya Minami; Yuko Yamada; K. Nakao; Chinatsu Yamada; Junko Shibata; Toshio Nishikimi; Kenji Ueshima; Kazuwa Nakao

Background The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization‐activated cation (HCN) channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias remains undetermined. Methods and Results We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity in transgenic mice (dnNRSF‐Tg) expressing a cardiac‐specific dominant‐negative form of neuron‐restrictive silencer factor, a useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly reduced ventricular tachyarrhythmias and improved survival among dnNRSF‐Tg mice while having no significant effect on heart rate or cardiac structure or function. Ivabradine most likely prevented the increase in automaticity otherwise seen in dnNRSF‐Tg ventricular myocytes. Moreover, cardiac‐specific overexpression of HCN2 in mice (HCN2‐Tg) made hearts highly susceptible to arrhythmias induced by chronic β‐adrenergic stimulation. Indeed, ventricular myocytes isolated from HCN2‐Tg mice were highly susceptible to β‐adrenergic stimulation‐induced abnormal automaticity, which was inhibited by ivabradine. Conclusions HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice. Conversely, cardiac‐specific overexpression of HCN2 channels increases arrhythmogenicity of β‐adrenergic stimulation. Our findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.


British Journal of Pharmacology | 2013

Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

Shinji Yasuno; Koichiro Kuwahara; Hideyuki Kinoshita; Chinatsu Yamada; Yasuaki Nakagawa; Satoru Usami; Yoshihiro Kuwabara; Kenji Ueshima; Masaki Harada; Toshio Nishikimi; Kazuwa Nakao

Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large‐scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects.


Cardiovascular Research | 2014

Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure

Yuko Yamada; Hideyuki Kinoshita; Koichiro Kuwahara; Yasuaki Nakagawa; Yoshihiro Kuwabara; Takeya Minami; Chinatsu Yamada; Junko Shibata; K. Nakao; Kosai Cho; Yuji Arai; Shinji Yasuno; Toshio Nishikimi; Kenji Ueshima; Shiro Kamakura; Motohiro Nishida; Shigeki Kiyonaka; Yasuo Mori; Takeshi Kimura; Kenji Kangawa; Kazuwa Nakao

AIMSnDysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure.nnnMETHODS AND RESULTSnWe compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice.nnnCONCLUSIONSnBoth pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure.


Hypertension | 2017

Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining Endothelial Integrity.

K. Nakao; Koichiro Kuwahara; Toshio Nishikimi; Yasuaki Nakagawa; Hideyuki Kinoshita; Takeya Minami; Yoshihiro Kuwabara; Chinatsu Yamada; Yuko Yamada; Takeshi Tokudome; Chiaki Nagai-Okatani; Naoto Minamino; Yoko M. Nakao; Shinji Yasuno; Kenji Ueshima; Masakatsu Sone; Takeshi Kimura; Kenji Kangawa; Kazuwa Nakao

We previously reported the secretion of C-type natriuretic peptide (CNP) from vascular endothelial cells and proposed the existence of a vascular natriuretic peptide system composed of endothelial CNP and smooth muscle guanylyl cyclase-B (GC-B), the CNP receptor, and involved in the regulation of vascular tone, remodeling, and regeneration. In this study, we assessed the functional significance of this system in the regulation of blood pressure in vivo using vascular endothelial cell–specific CNP knockout and vascular smooth muscle cell–specific GC-B knockout mice. These mice showed neither the skeletal abnormality nor the early mortality observed in systemic CNP or GC-B knockout mice. Endothelial cell–specific CNP knockout mice exhibited significantly increased blood pressures and an enhanced acute hypertensive response to nitric oxide synthetase inhibition. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in rings of mesenteric artery isolated from endothelial cell–specific CNP knockout mice. In addition, endothelin-1 gene expression was enhanced in pulmonary vascular endothelial cells from endothelial cell–specific CNP knockout mice, which also showed significantly higher plasma endothelin-1 concentrations and a greater reduction in blood pressure in response to an endothelin receptor antagonist than their control littermates. By contrast, vascular smooth muscle cell–specific GC-B knockout mice exhibited blood pressures similar to control mice, and acetylcholine-induced vasorelaxation was preserved in their isolated mesenteric arteries. Nonetheless, CNP-induced acute vasorelaxation was nearly completely abolished in mesenteric arteries from vascular smooth muscle cell–specific GC-B knockout mice. These results demonstrate that endothelium-derived CNP contributes to the chronic regulation of vascular tone and systemic blood pressure by maintaining endothelial function independently of vascular smooth muscle GC-B.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Pro-B-type natriuretic peptide is cleaved intracellularly: impact of distance between O-glycosylation and cleavage sites

Toshio Nishikimi; Yasuaki Nakagawa; Naoto Minamino; Masashi Ikeda; Kyoko Tabei; Aoi Fujishima; Kentaro Takayama; Kazumi Akimoto; Chinatsu Yamada; K. Nakao; Takeya Minami; Yoshihiro Kuwabara; Hideyuki Kinoshita; Takayoshi Tsutamoto; Toshihiko Ishimitsu; Kenji Kangawa; Koichiro Kuwahara; Kazuwa Nakao

We investigated the molecular mechanism underlying the processing of pro-B-type natriuretic peptide (proBNP). Rat neonatal atrial and ventricular myocytes were cultured separately. We examined the molecular forms of secreted and intracellular BNP in atrial and ventricular myocytes; levels of corin and furin mRNA in atrial and ventricular myocytes; the effect their knockdown on proBNP processing; plasma molecular forms of BNP from rats and humans with and without heart failure; and the impact of the distance between the glycosylation and cleavage sites in wild-type and mutant human proBNP, expressed in rat myocytes transfected with lentiviral vectors. BNP was the major molecular form secreted by atrial and ventricular myocytes. Transfection of furin siRNA reduced proBNP processing in both atrial and ventricular myocytes; however, transfection of corin siRNA did not reduce it. BNP was the major molecular form in rat plasma, whereas proBNP was the major form in human plasma. The relative fraction of human BNP in rat myocytes expressing human proBNP was about 60%, but increasing the distance between the glycosylation and cleavage sites through mutation, increased the processed fraction correspondingly. These results suggest that proBNP is processed into BNP intracellularly by furin. The level of proBNP processing is lower in humans than rats, most likely due to the smaller distance between the O-glycosylation and cleavage sites in humans.


Journal of Molecular and Cellular Cardiology | 2011

Zinc-finger protein 90 negatively regulates neuron-restrictive silencer factor-mediated transcriptional repression of fetal cardiac genes.

Leo Hata; Masao Murakami; Koichiro Kuwahara; Yasuaki Nakagawa; Hideyuki Kinoshita; Satoru Usami; Shinji Yasuno; Masataka Fujiwara; Yoshihiro Kuwabara; Takeya Minami; Yuko Yamada; Chinatsu Yamada; K. Nakao; Kenji Ueshima; Toshio Nishikimi; Kazuwa Nakao

Neuron-restrictive silencer factor (NRSF) is a zinc-finger transcription factor that binds to specific DNA sequences (NRSE) to repress transcription. By down-regulating the transcription of its target genes, NRSF contributes to the regulation of various biological processes, including neuronal differentiation, carcinogenesis and cardiovascular homeostasis. We previously reported that NRSF regulates expression of the cardiac fetal gene program, and that attenuation of NRSF-mediated repression contributes to genetic remodeling in hearts under pathological conditions. The precise molecular mechanisms and signaling pathways via which NRSF activity is regulated in pathological conditions of the heart remain unclear, however. In this study, to search for regulators of NRSF, we carried out yeast two-hybrid screening using NRSF as bait and identified zinc-finger protein (Zfp) 90 as a novel NRSF-binding protein. NRSF and Zfp90 colocalized in the nucleus, with the zinc-finger DNA-binding domain of the former specifically interacting with the latter. Zfp90 inhibited the repressor activity of NRSF by inhibiting its binding to DNA, thereby derepressing transcription of NRSF-target genes. Knockdown of Zfp90 by siRNA led to reduced expression of NRSF-target fetal cardiac genes, atrial and brain natriuretic peptide genes, and conversely, overexpression of Zfp90 in ventricular myocardium resulted in significant increases in the expression of these genes. Notably, expression of Zfp90 mRNA was significantly upregulated in mouse and human hearts with chronic heart failure. Collectively, these results suggest that Zfp90 functions as a negative regulator of NRSF and contributes to genetic remodeling during the development of cardiac dysfunction.


Cardiovascular Research | 2016

The renin–angiotensin system promotes arrhythmogenic substrates and lethal arrhythmias in mice with non-ischaemic cardiomyopathy

Chinatsu Yamada; Koichiro Kuwahara; Masatoshi Yamazaki; Yasuaki Nakagawa; Toshio Nishikimi; Hideyuki Kinoshita; Yoshihiro Kuwabara; Takeya Minami; Yuko Yamada; Junko Shibata; K. Nakao; Kosai Cho; Yuji Arai; Haruo Honjo; Kaichiro Kamiya; Kazuwa Nakao; Takeshi Kimura

AIMSnThe progression of pathological left ventricular remodelling leads to cardiac dysfunction and contributes to the occurrence of malignant arrhythmias and sudden cardiac death. The underlying molecular mechanisms remain unclear, however. Our aim was to examine the role of the renin-angiotensin system (RAS) in the mechanism underlying arrhythmogenic cardiac remodelling using a transgenic mouse expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). This mouse model exhibits progressive cardiac dysfunction leading to lethal arrhythmias.nnnMETHODS AND RESULTSnSubcutaneous administration of aliskiren, a direct renin inhibitor, significantly suppressed the progression of pathological cardiac remodelling and improved survival among dnNRSF-Tg mice while reducing arrhythmogenicity. Genetic deletion of the angiotensin type 1a receptor (AT1aR) similarly suppressed cardiac remodelling and sudden death. In optical mapping analyses, spontaneous ventricular tachycardia (VT) and fibrillation (VF) initiated by breakthrough-type excitations originating from focal activation sites and maintained by functional re-entry were observed in dnNRSF-Tg hearts. Under constant pacing, dnNRSF-Tg hearts exhibited markedly slowed conduction velocity, which likely contributes to the arrhythmogenic substrate. Aliskiren treatment increased conduction velocity and reduced the incidence of sustained VT. These effects were associated with suppression of cardiac fibrosis and restoration of connexin 43 expression in dnNRSF-Tg ventricles.nnnCONCLUSIONnRenin inhibition or genetic deletion of AT1aR suppresses pathological cardiac remodelling that leads to the generation of substrates maintaining VT/VF and reduces the occurrence of sudden death in dnNRSF-Tg mice. These findings demonstrate the significant contribution of RAS activation to the progression of arrhythmogenic substrates.


BMC Clinical Pharmacology | 2013

The effects of super-flux (high performance) dialyzer on the plasma glycosylated pro-B-type natriuretic peptide (proBNP) and glycosylated N-terminal proBNP in end-stage renal disease patients on dialysis.

Yasuaki Nakagawa; Toshio Nishikimi; Naoto Minamino; Chinatsu Yamada; K. Nakao; Takeya Minami; Yoshihiro Kuwabara; Hideyuki Kinoshita; Shinji Yasuno; Kenji Ueshima; Koichiro Kuwahara; Kenji Kangawa; Kazuwa Nakao

Background: Plasma BNP levels are predictive of prognosis in hemodialysis patients. However, recent studies showed that the current BNP immunoassay cross-reacts with glycosylated proBNP, and the NT-proBNP assay underestimates glycosylated NT-proBNP. In addition, the recently developed high performance dialyzer removes medium-sized molecular solutes such as b2-microgloburin. We therefore investigated the effects of high performance dialysis on measured levels of glycosylated proBNP, glycosylated NT-proBNP and other BNP-related peptides in end-stage renal disease (ESRD) patients on hemodialysis. Method: The relationships between clinical parameters and BNP-related molecule were also investigated. We used our newly developed immunoassay to measure plasma total BNP and proBNP in 105 normal subjects and 36 ESRD patients before and after hemodialysis. Plasma NT-proBNP was measured using Elecsys II after treatment with or without deglycosylating enzymes. We also measured plasma ANP and cGMP using radioimmunoassays. Results: All the measured BNP-related peptides were significantly higher in ESRD patients than healthy subjects. Total BNP (238.9%), proBNP (229.7%), glycoNT-proBNP (245.5%), nonglycoNT-proBNP (253.4%), ANP (250.4%) and cGMP (272.1%) were all significantly reduced after hemodialysis, and the magnitude of the reduction appeared molecular weightdependent. Both the proBNP/total BNP and glycoNT-proBNP/nonglycoNT-proBNP ratios were increased after hemodialysis. The former correlated positively with hemodialysis vintage and negatively with systolic blood pressure, while the latter correlated positively with parathyroid hormone levels. Conclusion: These results suggest that hemodialysis using super-flux dialyzer removes BNP-related peptides in a nearly molecular weight-dependent manner. The ProBNP/total BNP and glycoNT-proBNP/nonglycoNT-proBNP ratios appear to be influenced by hemodialysis-related parameters in ESRD patients on hemodialysis.

Collaboration


Dive into the Chinatsu Yamada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge