Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chioma M. Okeoma is active.

Publication


Featured researches published by Chioma M. Okeoma.


Retrovirology | 2014

Human semen contains exosomes with potent anti-HIV-1 activity

Marisa N. Madison; Richard J. Roller; Chioma M. Okeoma

BackgroundExosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of different strains of HIV-1 in a variety of cell lines.ResultsWe show that human semen contains a heterologous population of exosomes, enriched in mRNA encoding tetraspanin exosomal markers and various antiviral factors. Semen exosomes are internalized by recipient cells and upon internalization, inhibit replication of a broad array of HIV-1 strains. Remarkably, the anti-HIV-1 activity of semen exosomes is specific to retroviruses because semen exosomes blocked replication of the murine AIDS (mAIDS) virus complex (LP-BM5). However, exosomes from blood had no effect on HIV-1 or LP-BM5 replication. Additionally, semen and blood exosomes had no effect on replication of herpes simplex virus; types 1 and 2 (HSV1 and HSV2). Mechanistic studies indicate that semen exosomes exert a post-entry block on HIV-1 replication by orchestrating deleterious effects on particle-associated reverse transcriptase activity and infectivity.ConclusionsThese illuminating findings i) improve our knowledge of the cargo of semen exosomes, ii) reveal that semen exosomes possess anti-retroviral activity, and iii) suggest that semen exosome-mediated inhibition of HIV-1 replication may provide novel opportunities for the development of new therapeutics for HIV-1.


Viruses | 2015

Exosomes: Implications in HIV-1 Pathogenesis

Marisa N. Madison; Chioma M. Okeoma

Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.


Journal of General Virology | 2014

Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection

Wadie D. Mahauad-Fernandez; Philip H. Jones; Chioma M. Okeoma

Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2(-/-) mouse model. We observed an interesting dichotomy between WT and BST-2(-/-) mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2(-/-) mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.


Virology | 2015

Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex

Marisa N. Madison; Philip H. Jones; Chioma M. Okeoma

Exosomes are membranous extracellular nanovesicles secreted by diverse cell types. Exosomes from healthy human semen have been shown to inhibit HIV-1 replication and to impair progeny virus infectivity. In this study, we examined the ability of healthy human semen exosomes to restrict HIV-1 and LP-BM5 murine AIDS virus transmission in three different model systems. We show that vaginal cells internalize exosomes with concomitant transfer of functional mRNA. Semen exosomes blocked the spread of HIV-1 from vaginal epithelial cells to target cells in our cell-to-cell infection model and suppressed transmission of HIV-1 across the vaginal epithelial barrier in our trans-well model. Our in vivo model shows that human semen exosomes restrict intravaginal transmission and propagation of murine AIDS virus. Our study highlights an antiretroviral role for semen exosomes that may be harnessed for the development of novel therapeutic strategies to combat HIV-1 transmission.


Breast Cancer Research | 2014

Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis

Wadie D. Mahauad-Fernandez; Kris A. DeMali; Alicia K. Olivier; Chioma M. Okeoma

IntroductionSeveral innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers.MethodsMeta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion.ResultsBST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion.ConclusionsBST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.


Virology | 2013

BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer

Philip H. Jones; Wadie D. Mahauad-Fernandez; Marisa N. Madison; Chioma M. Okeoma

BST-2 restricts MMTV replication, but once infection has established, MMTV modulates BST-2 levels. MMTV-directed BST-2 modulation is tissue-specific and dependent on infection and neoplastic transformation status of cells. In the lymphoid compartment of infected mice, BST-2 expression is first upregulated and then significantly downregulated regardless of absence or presence of mammary tumors. However, in mammary gland tissues, upregulation of BST-2 expression is dependent on the presence of mammary tumors and tumor tissues themselves have high BST-2 levels. Elevated BST-2 expression in these tissues is not attributable to IFN since levels of IFNα and IFNγ negatively correlate with BST-2. Importantly, soluble factors released by tumor cells suppress IFNα and IFNγ but induce BST-2. These data suggest that overexpression of BST-2 in carcinoma tissues could not be attributed to IFNs but to a yet to be determined factor that upregulates BST-2 once oncogenesis is initiated.


Immunity, inflammation and disease | 2016

The role of BST‐2/Tetherin in host protection and disease manifestation

Wadie D. Mahauad-Fernandez; Chioma M. Okeoma

Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.


PLOS ONE | 2015

Bone Marrow Stromal Antigen 2 (BST-2) DNA Is Demethylated in Breast Tumors and Breast Cancer Cells

Wadie D. Mahauad-Fernandez; Nicholas Borcherding; Weizhou Zhang; Chioma M. Okeoma

Background Bone marrow stromal antigen 2 (BST-2) is a known anti-viral gene that has been recently identified to be overexpressed in many cancers, including breast cancer. BST-2 is critical for the invasiveness of breast cancer cells and the formation of metastasis in vivo. Although the regulation of BST-2 in immune cells is unraveling, it is unknown how BST-2 expression is regulated in breast cancer. We hypothesized that meta-analyses of BST-2 gene expression and BST-2 DNA methylation profiles would illuminate mechanisms regulating elevated BST-2 expression in breast tumor tissues and cells. Materials and Methods We performed comprehensive meta-analyses of BST-2 gene expression and BST-2 DNA methylation in The Cancer Genome Atlas (TCGA) and various Gene Expression Omnibus (GEO) datasets. BST-2 expression levels and BST-2 DNA methylation status at specific CpG sites on the BST-2 gene were compared for various breast tumor molecular subtypes and breast cancer cell lines. Results We show that BST-2 gene expression is inversely associated with the methylation status at specific CpG sites in primary breast cancer specimens and breast cancer cell lines. BST-2 demethylation is significantly more prevalent in primary tumors and cancer cells than in normal breast tissues or normal mammary epithelial cells. Demethylation of the BST-2 gene significantly correlates with its mRNA expression. These studies provide the initial evidence that significant differences exist in BST-2 DNA methylation patterns between breast tumors and normal breast tissues, and that BST-2 expression patterns in tumors and cancer cells correlate with hypomethylated BST-2 DNA. Conclusion Our study suggests that the DNA methylation pattern and expression of BST-2 may play a role in disease pathogenesis and could serve as a biomarker for the diagnosis of breast cancer.


Scientific Reports | 2017

Effect of prolonged freezing of semen on exosome recovery and biologic activity

Jennifer L. Welch; Marisa N. Madison; Joseph B. Margolick; Shannon Galvin; Phalguni Gupta; Otoniel Martínez-Maza; Chandravanu Dash; Chioma M. Okeoma

Exosomes are important vehicles of intercellular communication that shape host responses to physiologic, tumorigenic, and pathogenic conditions. The composition and function of exosomes are dynamic and depends on the state and condition of the cellular source. In prior work, we found that semen exosomes (SE) from healthy donors who do not use illicit drugs potently inhibit HIV-1. Following semen donation, specimens are either used immediately or frozen for use at a later time. It has been shown that short-term freezing of semen has no effect on SE-mediated HIV-1 inhibition. However, the effect of illicit drugs and prolonged freezing on SE bioactivity is unknown. Here, we show preservation of SE physical properties, (morphology, concentration, intensity/size) irrespective of illicit drug use or duration of semen freezing. Interestingly, illicit drugs and prolonged freezing decreased the levels of SE-bound CD63/CD9 and acetylcholinesterase activity respectively. Furthermore, we show differential effects of illicit drug use and prolonged freezing on SE-mediated HIV-1 inhibition. Our results highlight the importance of the source of SE and condition of semen storage on SE content and function. In-depth evaluation of donor drug-use and duration of semen storage on SE cargo and bioactivity will advance our understanding of SE composition and function.


Cell Death and Disease | 2017

Cysteine-linked dimerization of BST-2 confers anoikis resistance to breast cancer cells by negating proapoptotic activities to promote tumor cell survival and growth

Wadie D. Mahauad-Fernandez; Chioma M. Okeoma

Almost all breast tumors express the antiviral protein BST-2 with 67%, 25% and 8.2% containing high, medium or low levels of BST-2, respectively. Breast tumor cells and tissues that contain elevated levels of BST-2 are highly aggressive. Suppression of BST-2 expression reprograms tumorigenic properties of cancer cells and diminishes cancer cell aggressiveness. Using structure/function studies, we report that dimerization of BST-2 through cysteine residues located in the BST-2 extracellular domain (ECD), leads to anoikis resistance and cell survival through proteasome-mediated degradation of BIM—a key proapoptotic factor. Importantly, BST-2 dimerization promotes tumor growth in preclinical breast cancer models in vitro and in vivo. Furthermore, we demonstrate that restoration of the ECD cysteine residues is sufficient to rescue cell survival and tumor growth via a previously unreported pathway—BST-2/GRB2/ERK/BIM/Cas3. These findings suggest that disruption of BST-2 dimerization offers a potential therapeutic approach for breast cancer.

Collaboration


Dive into the Chioma M. Okeoma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marisa N. Madison

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Philip H. Jones

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia K. Olivier

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ashley L. Cooney

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge