Wadie D. Mahauad-Fernandez
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wadie D. Mahauad-Fernandez.
Journal of General Virology | 2014
Wadie D. Mahauad-Fernandez; Philip H. Jones; Chioma M. Okeoma
Bone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2(-/-) mouse model. We observed an interesting dichotomy between WT and BST-2(-/-) mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2(-/-) mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.
Breast Cancer Research | 2014
Wadie D. Mahauad-Fernandez; Kris A. DeMali; Alicia K. Olivier; Chioma M. Okeoma
IntroductionSeveral innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers.MethodsMeta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion.ResultsBST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion.ConclusionsBST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.
Virology | 2013
Philip H. Jones; Wadie D. Mahauad-Fernandez; Marisa N. Madison; Chioma M. Okeoma
BST-2 restricts MMTV replication, but once infection has established, MMTV modulates BST-2 levels. MMTV-directed BST-2 modulation is tissue-specific and dependent on infection and neoplastic transformation status of cells. In the lymphoid compartment of infected mice, BST-2 expression is first upregulated and then significantly downregulated regardless of absence or presence of mammary tumors. However, in mammary gland tissues, upregulation of BST-2 expression is dependent on the presence of mammary tumors and tumor tissues themselves have high BST-2 levels. Elevated BST-2 expression in these tissues is not attributable to IFN since levels of IFNα and IFNγ negatively correlate with BST-2. Importantly, soluble factors released by tumor cells suppress IFNα and IFNγ but induce BST-2. These data suggest that overexpression of BST-2 in carcinoma tissues could not be attributed to IFNs but to a yet to be determined factor that upregulates BST-2 once oncogenesis is initiated.
Immunity, inflammation and disease | 2016
Wadie D. Mahauad-Fernandez; Chioma M. Okeoma
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
PLOS ONE | 2015
Wadie D. Mahauad-Fernandez; Nicholas Borcherding; Weizhou Zhang; Chioma M. Okeoma
Background Bone marrow stromal antigen 2 (BST-2) is a known anti-viral gene that has been recently identified to be overexpressed in many cancers, including breast cancer. BST-2 is critical for the invasiveness of breast cancer cells and the formation of metastasis in vivo. Although the regulation of BST-2 in immune cells is unraveling, it is unknown how BST-2 expression is regulated in breast cancer. We hypothesized that meta-analyses of BST-2 gene expression and BST-2 DNA methylation profiles would illuminate mechanisms regulating elevated BST-2 expression in breast tumor tissues and cells. Materials and Methods We performed comprehensive meta-analyses of BST-2 gene expression and BST-2 DNA methylation in The Cancer Genome Atlas (TCGA) and various Gene Expression Omnibus (GEO) datasets. BST-2 expression levels and BST-2 DNA methylation status at specific CpG sites on the BST-2 gene were compared for various breast tumor molecular subtypes and breast cancer cell lines. Results We show that BST-2 gene expression is inversely associated with the methylation status at specific CpG sites in primary breast cancer specimens and breast cancer cell lines. BST-2 demethylation is significantly more prevalent in primary tumors and cancer cells than in normal breast tissues or normal mammary epithelial cells. Demethylation of the BST-2 gene significantly correlates with its mRNA expression. These studies provide the initial evidence that significant differences exist in BST-2 DNA methylation patterns between breast tumors and normal breast tissues, and that BST-2 expression patterns in tumors and cancer cells correlate with hypomethylated BST-2 DNA. Conclusion Our study suggests that the DNA methylation pattern and expression of BST-2 may play a role in disease pathogenesis and could serve as a biomarker for the diagnosis of breast cancer.
Cell Death and Disease | 2017
Wadie D. Mahauad-Fernandez; Chioma M. Okeoma
Almost all breast tumors express the antiviral protein BST-2 with 67%, 25% and 8.2% containing high, medium or low levels of BST-2, respectively. Breast tumor cells and tissues that contain elevated levels of BST-2 are highly aggressive. Suppression of BST-2 expression reprograms tumorigenic properties of cancer cells and diminishes cancer cell aggressiveness. Using structure/function studies, we report that dimerization of BST-2 through cysteine residues located in the BST-2 extracellular domain (ECD), leads to anoikis resistance and cell survival through proteasome-mediated degradation of BIM—a key proapoptotic factor. Importantly, BST-2 dimerization promotes tumor growth in preclinical breast cancer models in vitro and in vivo. Furthermore, we demonstrate that restoration of the ECD cysteine residues is sufficient to rescue cell survival and tumor growth via a previously unreported pathway—BST-2/GRB2/ERK/BIM/Cas3. These findings suggest that disruption of BST-2 dimerization offers a potential therapeutic approach for breast cancer.
Oncotarget | 2017
Wasifa Naushad; Wadie D. Mahauad-Fernandez; Chioma M. Okeoma
There is now irrefutable evidence that overexpression of the innate immunity protein―BST-2, in breast cancer cells is implicated in tumor growth and progression. The cellular mechanisms that control BST-2-mediated effect in tumor progression involve enhancement of cancer cell motility―migration/invasion. However, the distinct structural elements of BST-2 that mediate breast cancer cell motility remain unknown. Here, we used various motility assays and different variants of BST-2 to examine the cellular and structural mechanisms controlling BST-2-mediated cell motility. We show that BST-2 silencing in various cancer cell lines inhibits cell motility. Restoration of BST-2 expression using construct expressing wild type BST-2 rescues cell motility. Mutational analysis identifies the cytoplasmic tail of BST-2 as a novel regulator of cancer cell motility, because cell motility was significantly abrogated by substitution of the BST-2 cytoplasmic tail tyrosine residues to alanine residues. Furthermore, in a spheroid invasion model, BST-2-expressing tumor spheroids are highly invasive inside 3D Matrigel matrices. In this model, the spreading distance of BST-2-expressing spheroids was significantly higher than that of BST-2-suppressed spheroids. Collectively, our data reveal that i) BST-2-expressing breast cancer cells in spheroids are more motile than their BST-2-supressed counterparts; ii) BST-2 cytoplasmic tail regulates non-proteolytic (migration) and proteolytic (invasion) mechanisms of breast cancer cell motility; and iii) replacement of the tyrosine residues at positions 6 and 8 in the cytoplasmic tail of BST-2 with alanine residues inhibits cell motility.
Archive | 2016
Wadie D. Mahauad-Fernandez; Chioma M. Okeoma
The increasing prevalence of chikungunya virus (CHIKV) in the United States and around the world, and the lack of antiviral treatments or vaccines highlight the potential threat of a global CHIKV pandemic. CHIKV is a mosquito-borne alphavirus that is currently causing outbreaks in many parts of the world, including the Americas, India, Africa, and parts of Europe. Host response against CHIKV infection is complex and remains unresolved. Here we discuss the role of the host restriction factor—bone marrow stromal antigen 2 (BST-2) also known as tetherin—as an intrinsic factor involved in CHIKV infection. Recent research reports suggest that the release of nascent CHIKV particles and replication of CHIKV in cultured cells and in animal models is impaired by the expression of BST-2. In this chapter, we discuss available published data on how BST-2 restricts CHIKV and how CHIKV in turn neutralizes BST-2.
Future Virology | 2016
Wadie D. Mahauad-Fernandez; Chioma M. Okeoma
Journal of Virology | 2018
Rachel B. Brouillette; Elisabeth K. Phillips; Radhika Patel; Wadie D. Mahauad-Fernandez; Sven Moller-Tank; Kai J. Rogers; Jacob A. Dillard; Ashley L. Cooney; Luis Martínez-Sobrido; Chioma M. Okeoma; Wendy Maury