Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao-lei Zhang is active.

Publication


Featured researches published by Xiao-lei Zhang.


Science Translational Medicine | 2012

Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall

Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.


Neuropsychopharmacology | 2013

GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects

Jeffrey Burgdorf; Xiao-lei Zhang; Katherine L. Nicholson; Robert L. Balster; J. David Leander; Patric K. Stanton; Amanda L. Gross; Roger A. Kroes; Joseph R. Moskal

Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of ‘metaplasticity’ by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression.


The Journal of Physiology | 2006

BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses

William J. Tyler; Xiao-lei Zhang; Kenichi N. Hartman; Jochen Winterer; Wolfgang S. Müller; Patric K. Stanton; Lucas Pozzo-Miller

Exerting its actions pre‐, post‐ and peri‐synaptically, brain‐derived neurotrophic factor (BDNF) is one of the most potent modulators of hippocampal synaptic function. Here, we examined the effects of BDNF on a rapidly recycling pool (RRP) of vesicles within excitatory synapses. First, we estimated vesicular release in hippocampal cultures by performing FM4‐64 imaging in terminals impinging on enhanced green fluorescent protein (eGFP)‐labelled dendritic spines – a hallmark of excitatory synapses. Consistent with a modulation of the RRP, BDNF increased the evoked destaining rate of FM4‐64 only during the initial phase of field stimulation. Multiphoton microscopy in acute hippocampal slices confirmed these observations by selectively imaging the RRP, which was loaded with FM1‐43 by hyperosmotic shock. Slices exposed to BDNF showed an increase in the evoked and spontaneous rates of FM1‐43 destaining from terminals in CA1 stratum radiatum, mostly representing excitatory terminals of Schaffer collaterals. Variance‐mean analysis of evoked EPSCs in CA1 pyramidal neurons further confirmed that release probability is increased in BDNF‐treated slices, without changes in the number of independent release sites or average postsynaptic quantal amplitude. Because BDNF was absent during dye loading, imaging, destaining and whole‐cell recordings, these results demonstrate that BDNF induces a long‐lasting enhancement in the probability of transmitter release at hippocampal excitatory synapses by modulating the RRP. Since the endogenous BDNF scavenger TrkB‐IgG prevented the enhancement of FM1‐43 destaining rate caused by induction of long‐term potentiation in acute hippocampal slices, the modulation of a rapidly recycling vesicle pool may underlie the role of BDNF in hippocampal long‐term synaptic plasticity.


Neurobiology of Aging | 2011

The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats

Jeffrey Burgdorf; Xiao-lei Zhang; Craig Weiss; Elizabeth A. Matthews; John F. Disterhoft; Patric K. Stanton; Joseph R. Moskal

NMDA receptor (NMDAR) activity has been strongly implicated in both in vitro and in vivo learning models and the decline in cognitive function associated with aging and is linked to a decrease in NMDAR functional expression. GLYX-13 is a tetrapeptide (Thr-Pro-Pro-Thr) which acts as a NMDAR receptor partial agonist at the glycine site. GLYX-13 was administered to young adult (3 months old) and aged (27-32 months old) Fischer 344 X Brown Norway F1 rats (FBNF1), and behavioral learning tested in trace eye blink conditioning (tEBC), a movable platform version of the Morris water maze (MWM), and alternating t-maze tasks. GLYX-13 (1mg/kg, i.v.) enhanced learning in both young adult and aging animals for MWM and alternating t-maze, and increased tEBC in aging rats. We previously showed optimal enhancement of tEBC in young adult rats given GLYX-13 at the same dose. Of these learning tasks, the MWM showed the most robust age related deficit in learning. In the MWM, GLYX-13 enhancement of learning was greater in the old compared to the young adult animals. Examination of the induction of long-term potentiation (LTP) and depression (LTD) at Schaffer collateral-CA1 synapses in hippocampal slices showed that aged rats showed marked, selective impairment in the magnitude of LTP evoked by a sub-maximal tetanus, and that GLYX-13 significantly enhanced the magnitude of LTP in slices from both young adult and aged rats without affecting LTD. These data, combined with the observation that the GLYX-13 enhancement of learning was greater in old than in young adult animals, suggest that GLYX-13 may be a promising treatment for deficits in cognitive function associated with aging.


Neuropharmacology | 2008

A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral–CA1 synapses in hippocampus

Xiao-lei Zhang; John Sullivan; Joseph R. Moskal; Patric K. Stanton

N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.


European Journal of Neuroscience | 2005

Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices.

Patric K. Stanton; Jochen Winterer; Xiao-lei Zhang; Wolfgang S. Müller

Recent studies using the styryl dye FM1‐43 and two‐photon microscopy to directly visualize transmitter release at CA3–CA1 excitatory synapses in the hippocampus have demonstrated that activity‐dependent long‐term potentiation (LTP) and long‐term depression are associated with alterations in vesicular release. It is not known whether particular vesicle pools preferentially express these alterations or what second messenger cascades are involved. To address these questions, we selectively loaded FM1‐43 into the rapidly recycling pool (RRP) of vesicles by use of a brief hypertonic shock to release and load the RRP. We demonstrate here that the induction of LTP can lead to a selective long‐lasting enhancement in presynaptic release from the RRP, while reserve pool kinetics remain unchanged. LTP of RRP release was N‐methyl‐d‐aspartate receptor‐dependent and also required production of the intercellular messenger NO and activation of receptor tyrosine kinase. Measurement of FM1‐43 stimulus‐evoked uptake rates following induction of LTP confirmed that LTP produces more rapid recycling of vesicles released by electrical stimulation, consistent with an enhanced release probability from the RRP.


The Journal of Neuroscience | 2006

NMDA-Dependent, But Not Group I Metabotropic Glutamate Receptor-Dependent, Long-Term Depression at Schaffer Collateral–CA1 Synapses Is Associated with Long-Term Reduction of Release from the Rapidly Recycling Presynaptic Vesicle Pool

Xiao-lei Zhang; Zhen-yu Zhou; Jochen Winterer; Wolfgang Müller; Patric K. Stanton

Postsynaptic alterations have been suggested to account for NMDA receptor (NMDAR)-dependent long-term depression (LTD) and long-term potentiation of synaptic strength, although there is substantial evidence supporting changes in presynaptic release. Direct chemical activation of either NMDA or group I metabotropic glutamate receptor (mGluR1) elicits LTD of similar magnitudes, but it is unknown whether they share common expression mechanisms. Using dual-photon laser-scanning microscopy of FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide] to directly visualize presynaptic vesicular release from the rapidly recycling vesicle pool (RRP) at Schaffer collateral terminals in field CA1 of rat hippocampal slices, we found that a persistent reduction in vesicular release from the RRP is induced by NMDA-LTD but not by mGluR1-LTD. Variance-mean analyses of Schaffer collateral release probability (Pr) at varying extracellular calcium concentrations confirmed that NMDA-LTD was associated with reduced Pr, whereas mGluR1-LTD was not. Pharmacological isolation of NMDAR-dependent and mGluR-dependent forms of stimulus-evoked LTD revealed that both are composed of a combination of presynaptic and postsynaptic alterations. However, when group I mGluR-dependent LTD was isolated by combining an NMDAR blocker with a group II mGluR antagonist, this form of LTD was purely postsynaptic. The nitric oxide synthase inhibitor Nω-nitro-l-arginine blocked the induction of NMDA-LTD but did not alter mGluR-LTD, consistent with a selective role for nitric oxide as a retrograde messenger mediating NMDA-LTD. These data demonstrate that single synapses can express multiple forms of LTD with different sites of expression, that NMDA-LTD is a combination of presynaptic and postsynaptic alterations, but that group I mGluR-LTD appears to be expressed entirely postsynaptically.


The Journal of Neuroscience | 2013

Essential Role for Synaptopodin in Dendritic Spine Plasticity of the Developing Hippocampus

Xiao-lei Zhang; Beatrice Pöschel; Christian Faul; Chirag Upreti; Patric K. Stanton; Peter Mundel

Dendritic spines are a major substrate of brain plasticity. Although many studies have focused on Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of spine dynamics and synaptic function in adult brain, much less is know about protein kinase A (PKA)-dependent regulation of spine shape dynamics during postnatal brain development. Synaptopodin is a dendritic spine associated modulator of actin dynamics and a substrate of PKA. Here we show that NMDA and cAMP-induced dendritic spine expansion is impaired in hippocampal slices from 15- and 21-d-old synaptopodin-deficient mice. We further show that synaptopodin is required for full expression of PKA-dependent hippocampal long-term potentiation in 15- and 21-d-old, but not adult, mice. PKA-induced cAMP response element-binding phosphorylation is normal in the hippocampus of synaptopodin-deficient mice, suggesting that synaptopodin functions independently of cAMP response element-binding. Our results identify synaptopodin as a substrate of PKA in hippocampal neurons and point to an essential role for synaptopodin in activity-dependent regulation of dendritic spine dynamics and synaptic plasticity in postnatal brain development.


Neuroscience | 2015

The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus.

Jeffrey Burgdorf; Xiao-lei Zhang; Craig Weiss; Amanda L. Gross; S.R. Boikess; Roger A. Kroes; M.A. Khan; Ronald M. Burch; C.S. Rex; John F. Disterhoft; Patric K. Stanton; Joseph R. Moskal

Rapastinel (GLYX-13) is an N-methyl-d-aspartate receptor (NMDAR) modulator that has characteristics of a glycine site partial agonist. Rapastinel is a robust cognitive enhancer and facilitates hippocampal long-term potentiation (LTP) of synaptic transmission in slices. In human clinical trials, rapastinel has been shown to produce marked antidepressant properties that last for at least one week following a single dose. The long-lasting antidepressant effect of a single dose of rapastinel (3mg/kg IV) was assessed in rats using the Porsolt, open field and ultrasonic vocalization assays. Cognitive enhancement was examined using the Morris water maze, positive emotional learning, and contextual fear extinction tests. LTP was assessed in hippocampal slices. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex. Significant antidepressant-like or cognitive enhancing effects were observed that lasted for at least one week in each model. Rapastinel facilitated LTP 1day-2weeks but not 4weeks post-dosing. Biweekly dosing with rapastinel sustained this effect for at least 8weeks. A single dose of rapastinel increased the proportion of whole-cell NMDAR current contributed by NR2B-containing NMDARs in the hippocampus 1week post-dosing, that returned to baseline by 4weeks post-dosing. The NMDAR antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the antidepressant-like effect of rapastinel 1week post dosing. A single injection of rapastinel also increased mature spine density in both brain regions 24h post-dosing. These data demonstrate that rapastinel produces its long-lasting antidepressant effects via triggering NMDAR-dependent processes that lead to increased sensitivity to LTP that persist for up to two weeks. These data also suggest that these processes led to the alterations in dendritic spine morphologies associated with the maintenance of long-term changes in synaptic plasticity associated with learning and memory.


Brain | 2018

Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model

Chad Tagge; Andrew Fisher; Olga Minaeva; Amanda Gaudreau-Balderrama; Juliet A. Moncaster; Xiao-lei Zhang; Mark Wojnarowicz; Noel Casey; Haiyan Lu; Olga N. Kokiko-Cochran; Sudad Saman; Maria Ericsson; Kristen D. Onos; Ronel Veksler; Vladimir V. Senatorov; Asami Kondo; Xiao Z. Zhou; Omid Miry; Linnea R. Vose; Katisha Gopaul; Chirag Upreti; Christopher J. Nowinski; Robert C. Cantu; Victor E. Alvarez; Audrey M. Hildebrandt; Erich S. Franz; Janusz Konrad; James Hamilton; Ning Hua; Yorghos Tripodis

The mechanisms underpinning concussion, traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE) are poorly understood. Using neuropathological analyses of brains from teenage athletes, a new mouse model of concussive impact injury, and computational simulations, Tagge et al. show that head injuries can induce TBI and early CTE pathologies independent of concussion.

Collaboration


Dive into the Xiao-lei Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chirag Upreti

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge