Chloe Singleton
University of East Anglia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chloe Singleton.
Biochemical Journal | 2008
Liang Zhou; Chloe Singleton; Nick E. Le Brun
CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pK(a) values of 6 or below. Chelator competition experiments demonstrated that the protein binds Cu(I) with extremely high affinity, with a small but significant pH-dependence over the range pH 6.5-8.0. From these data, a pH-corrected formation constant, beta(2)= approximately 6 x 10(22) M(-2), was determined. Rapid exchange of Cu(I) between CopZ and the Cu(I)-chelator BCS (bathocuproine disulfonate) indicated that the mechanism of exchange does not involve simple dissociation of Cu(I) from CopZ (or BCS), but instead proceeds via the formation of a transient Cu(I)-mediated protein-chelator complex. Such a mechanism has similarities to the Cu(I)-exchange pathway that occurs between components of copper-trafficking pathways.
Biometals | 2007
Chloe Singleton; Nick E. Le Brun
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.
Journal of Biological Chemistry | 2010
Chloe Singleton; Gaye F. White; Jonathan D. Todd; Sophie J. Marritt; Myles R. Cheesman; Andrew W. B. Johnston; Nick E. Le Brun
Heme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein. Here we show that the Rhizobium leguminosarum global iron regulatory protein Irr, which has many homologues within the α-proteobacteria and is a member of the Fur superfamily, binds heme, resulting in a dramatic decrease in affinity between the protein and its cognate, regulatory DNA operator sequence. Spectroscopic studies of wild-type and mutant Irr showed that the principal (but not only) heme-binding site is at a conserved HXH motif, whose substitution led to loss of DNA binding in vitro and of regulatory function in vivo. The R. leguminosarum Irr behaves very differently to the Irr of Bradyrhizobium japonicum, which is rapidly degraded in vivo by an unknown mechanism in conditions of elevated iron or heme, but whose DNA binding affinity in vitro does not respond to heme.
Biochemical Journal | 2008
Chloe Singleton; Lucia Banci; Simone Ciofi-Baffoni; Leonardo Tenori; Margaret A. Kihlken; Nick E. Le Brun
CopA, a P-type ATPase from Bacillus subtilis, plays a major role in the resistance of the cell to copper by effecting the export of the metal across the cytoplasmic membrane. The N-terminus of the protein features two soluble domains (a and b), that each contain a Cu(I)-binding motif, MTCAAC. We have generated a stable form of the wild-type two-domain protein, CopAab, and determined its solution structure. This was found to be similar to that reported previously for a higher stability S46V variant, with minor differences mostly confined to the Ser(46)-containing beta3-strand of domain a. Chemical-shift analysis demonstrated that the two Cu(I)-binding motifs, located at different ends of the protein molecule, are both able to participate in Cu(I) binding and that Cu(I) is in rapid exchange between protein molecules. Surprisingly, UV-visible and fluorescence spectroscopy indicate very different modes of Cu(I) binding below and above a level of 1 Cu(I) per protein, consistent with a major structural change occurring above 1 Cu(I) per CopAab. Analytical equilibrium centrifugation and gel filtration results show that this is a result of Cu(I)-mediated dimerization of the protein. The resulting species is highly luminescent, indicating the presence of a solvent-shielded Cu(I) cluster.
Biochemistry | 2009
S Hearnshaw; C West; Chloe Singleton; Liang Zhou; Margaret A. Kihlken; Richard W. Strange; N.E Le Brun; Andrew M. Hemmings
Copper trafficking proteins and copper-sensitive regulators are often found to be able to bind multiple Cu(I) ions in the form of Cu(I) clusters. We have determined the high-resolution X-ray crystal structure of an Atx1-like copper chaperone protein from Bacillus subtilis containing a novel tetranuclear Cu(I) cluster. The identities and oxidation states of the cluster ions were established unambiguously by refinement of X-ray energy-dependent anomalous scattering factors. The [Cu(4)(S-Cys)(4)(N-His)(2)] cluster geometry provides new structural insights into not only the binding of multiple cuprous ions by metallochaperones but also protein-associated tetranuclear Cu(I) clusters, including those found in eukaryotic copper-responsive transcription factors.
Dalton Transactions | 2009
Chloe Singleton; Nick E. Le Brun
CopA from Bacillus subtilis is a Cu(I)-transporting P-type ATPase involved in resistance to high levels of environmental copper. At its N-terminus are two soluble domains, a and b, that, when generated in isolation from the membrane part, have previously been shown to exhibit unusual Cu(I)-binding behaviour: at >1 Cu(I) per CopAab the protein dimerises, resulting in the formation of a species with luminescence properties characteristic of a solvent-shielded Cu(I) cluster. Further insight into the Cu(I)-binding properties of CopAab are now reported. We demonstrate that the initial binding of Cu(I) occurs with very high affinity (K = -4 x 10(17) M(-1)) and that CopAab can accommodate up to 4 Cu(I) per protein and remains dimeric at higher Cu(I)-loadings. Fitting of UV-visible, near UV CD, fluorescence and luminescence spectroscopic titration data supports a model in which Cu(I) binds sequentially to CopAab, and also provides estimates of the association constants for Cu(I)-binding and dimerisation steps. Finally, low molecular weight thiols are shown not to affect the initial binding of Cu(I), but significantly influence binding at levels >1 Cu(I) per CopAab such that dimerisation is inhibited, though not abolished.
Frontiers in Microbiology | 2012
Martha Gledhill; Aurélie Devez; Andrea Highfield; Chloe Singleton; Eric P. Achterberg; Declan C. Schroeder
In this study we show that metals, and in particular copper (Cu), can disrupt the lytic cycle in the Emiliania huxleyi – EhV86 host–virus system. E. huxleyi lysis rates were reduced at high total Cu concentrations (> approximately 500 nM) in the presence and absence of EDTA (ethylenediaminetetraacetic acid) in acute short term exposure experiments. Zinc (Zn), cadmium (Cd), and cobalt (Co) were not observed to affect the lysis rate of EhV86 in these experiments. The cellular glutathione (GSH) content increased in virus infected cells, but not as a result of metal exposure. In contrast, the cellular content of phytochelatins (PCs) increased only in response to metal exposure. The increase in glutathione content is consistent with increases in the production of reactive oxygen species (ROS) on viral lysis, while increases in PC content are likely linked to metal homeostasis and indicate that metal toxicity to the host was not affected by viral infection. We propose that Cu prevents lytic production of EhV86 by interfering with virus DNA (deoxyribonucleic acid) synthesis through a transcriptional block, which ultimately suppresses the formation of ROS.
Journal of Biological Inorganic Chemistry | 2008
Margaret A. Kihlken; Chloe Singleton; Nick E. Le Brun
The chaperone CopZ together with the P-type ATPase transporter CopA constitute a copper-detoxification system in Bacillus subtilis that is commonly found in bacteria and higher cells. Previous studies of the regulation of the copZA operon showed that expression is significantly upregulated in response to elevated concentrations of environmental silver and cadmium, as well as copper. Here, we have used spectroscopic and bioanalytical methods to investigate in detail the capacity of CopZ to bind these metal ions (as Ag+ and Cd2+). We demonstrate that Ag+ binding mimics closely that of Cu+: Ag+-mediated dimerisation of the protein occurs, and distinct Ag+-bound species are formed at higher Ag+ loadings. Cd2+ also binds to CopZ, but exhibits significantly different behaviour. Cd2+-mediated dimerisation is only observed at low loadings, such that at 0.5 and one Cd2+ per CopZ the protein is present mainly in a monomeric form; and multinuclear higher-order forms of Cd2+–CopZ are not observed. Competition binding studies reveal that Ag+ binds with an affinity very similar to that of Cu+, while Cd2+ binding is significantly weaker. These data provide support for the proposal that CopZ may be involved in the detoxification of silver and cadmium, in addition to copper.
FEBS Journal | 2011
Gaye F. White; Chloe Singleton; Jonathan D. Todd; Myles R. Cheesman; Andrew W. B. Johnston; Nick E. Le Brun
The iron responsive regulator Irr is found in a wide range of α‐proteobacteria, where it regulates many genes in response to the essential but toxic metal iron. Unlike Fur, the transcriptional regulator that is used for iron homeostasis by almost all other bacterial lineages, Irr does not sense Fe2+ directly, but, rather, interacts with a physiologically important form of iron, namely heme. Recent studies of Irr from the N2‐fixing symbiont Rhizobium leguminosarum (IrrRl) showed that it binds heme with submicromolar affinity at a His‐Xxx‐His (HxH) motif. This caused the protein to dissociate from its cognate DNA regulatory iron control element box sequences, thus allowing expression of its target genes under iron‐replete conditions. In the present study, we report new insights into the mechanisms and consequences of heme binding to Irr. In addition to the HxH motif, Irr binds heme at a second, lower‐affinity site. Spectroscopic studies of wild‐type Irr and His variants show that His46 and probably His66 are involved in coordinating heme in a low‐spin state at this second site. By contrast to the well‐studied Irr from Bradyrhizobium japonicum, neither heme site of IrrRl stabilizes ferrous heme. Furthermore, we show that heme‐free IrrRl exists as a mixture of dimeric and larger, likely hexameric, forms and that heme binding promotes IrrRl oligomerization. Bioanalytical studies of IrrRl variants showed that this property is not dependent on the HxH motif but is associated with heme binding at the second site.
FEBS Journal | 2012
Liang Zhou; Chloe Singleton; Oliver Hecht; Geoffrey R. Moore; Nick E. Le Brun
CopA, a P‐type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1‐like domains separated by a short linker at its N‐terminus, an arrangement that occurs widely in copper transporters from both prokaryotes and eukaryotes. Both domains were previously found to bind Cu(I) with very high affinity. Above a level of 1 Cu(I) per CopAab, dimerization occurred, leading to a highly luminescent multinuclear Cu(I) species [Singleton C & Le Brun NE (2009) Dalton Trans, 688–696]. To try to understand the contributions of each domain to the complex Cu(I)‐binding behaviour of this and related proteins, we purified a wild‐type form of the first domain (CopAa). In isolation, the domain bound Cu(I) with very high affinity (K = ∼ 1 × 1018 m−1) and underwent Cu(I)‐mediated protein association, resulting in a mixture of dimer and tetramer species. Addition of further Cu(I) up to 1 Cu(I) per CopAa monomer led to a weakly luminescent species, whereas further additions [2 Cu(I) per CopAa monomer] resulted in protein unfolding. Analysis of the MTCAAC binding motif Cys residue acid–base properties revealed pKa values of 5.7 and 7.3, consistent with the pH dependence of Cu(I) binding, and with the proposal that low proton affinity is associated with high Cu(I) affinity. Finally, Cu(I) exchange between CopAa and the chelator bathocuproine sulfonate revealed rapid exchange in both directions, demonstrating an interaction between the protein and the chelator that catalyses metal ion transfer. Overall, CopAa exhibits similarities to CopAab in terms of affinity and complexity of Cu(I) binding, but the details of Cu(I) binding are distinct.