Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cholpon S. Djuzenova is active.

Publication


Featured researches published by Cholpon S. Djuzenova.


British Journal of Cancer | 2010

Novel HSP90 inhibitors, NVP-AUY922 and NVP-BEP800, radiosensitise tumour cells through cell-cycle impairment, increased DNA damage and repair protraction.

L Stingl; T Stühmer; Manik Chatterjee; M R Jensen; Michael Flentje; Cholpon S. Djuzenova

Background:Heat-shock protein 90 (Hsp90) has a crucial role in both the stabilisation and regulation of various proteins, including those related to radioresistance. Inhibition of Hsp90 may therefore provide a strategy for enhancing the radiosensitivity of tumour cells. This study explores the responses of four tumour cell lines (A549, GaMG, HT 1080 and SNB19) to combined treatment with ionising radiation (IR) and two novel inhibitors of Hsp90, NVP-AUY922 and NVP-BEP800. The techniques used included cell and colony counts, expression of Hsp90, Hsp70, Akt, survivin, cleaved caspase 3, p53, cell-cycle progression and associated proteins. DNA damage was analysed by histone γH2AX and Comet assays.Results:We found that NVP-AUY922 and NVP-BEP800 enhanced radiosensitivity in all tested cell lines. In contrast, only two cell lines (HT 1080 and GaMG) exhibited an increased rate of apoptosis after drug pretreatment, as revealed by western blot. In all tested cell lines, the expression of histone γH2AX, a marker of DNA double-strand breaks, after combined drug-IR treatment was higher and its decay rate was slower than those after each single treatment modality. Drug-IR treatment also resulted in impaired cell-cycle progression, as indicated by S-phase depletion and G2/M arrest. In addition, the cell cycle-associated proteins, Cdk1 and Cdk4, were downregulated after Hsp90 inhibition.Interpretation:These findings show that the novel inhibitors of Hsp90 can radiosensitise tumour cell lines of different entities through destabilisation and depletion of several Hsp90 client proteins, thus causing the depletion of S phase and G2/M arrest, increased DNA damage and repair protraction and, to some extent, apoptosis. The results might have important implications for the radiotherapy of solid tumours.


Laboratory Investigation | 2001

Response to X-Irradiation of Fanconi Anemia Homozygous and Heterozygous Cells Assessed by the Single-Cell Gel Electrophoresis (Comet) Assay

Cholpon S. Djuzenova; Andreas Rothfuss; Ulrich Oppitz; Günter Speit; Detlev Schindler; Holger Hoehn; Michael Flentje

Fanconi anemia (FA) is an autosomal recessive disorder characterized by bone marrow failure and cancer susceptibility. Patient cells are sensitive to a variety of clastogens, most prominently cross-linking agents. Although there is the long-standing clinical impression of radiosensitivity, in vitro studies have yielded conflicting results. We exposed peripheral blood mononuclear cells from FA patients and carriers to x-rays and determined their DNA damage and repair profiles using the alkaline single-cell gel electrophoresis (comet) assay. Studies were carried out in two independent series of experiments by two laboratories using different protocols. The cells of both FA patients and carriers showed uniformly high initial DNA damage rates as assessed by the total initial tail moment. In addition, the average residual tail moment at 30 to 50 minutes and the repair half-time parameters were significantly elevated. These findings suggest an increased release of fragmented DNA following x-ray exposure in cells that carry one or two mutations in one of the FA genes. The comet assay may be a useful adjunct for heterozygote detection in families of FA patients.


British Journal of Cancer | 2006

Radiosensitivity in breast cancer assessed by the Comet and micronucleus assays

Cholpon S. Djuzenova; B Mühl; M Fehn; U Oppitz; B Müller; Michael Flentje

Spontaneous and radiation-induced genetic instability of peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=50) was examined using the single-cell gel electrophoresis (Comet) assay and a modified G2 micronucleus (MN) test. Cells from apparently healthy donors (n=16) and from cancer patients (n=9) with an adverse early skin reaction to radiotherapy (RT) served as references. Nonirradiated cells from the three tested groups exhibited similar baseline levels of DNA fragmentation assessed by the Comet assay. Likewise, the Comet analysis of in vitro irradiated (5 Gy) cells did not reveal any significant differences among the three groups with respect to the initial and residual DNA fragmentation, as well as the DNA repair kinetics. The G2 MN test showed that cells from cancer patients with an adverse skin reaction to RT displayed increased frequencies of both spontaneous and radiation-induced MN compared to healthy control or the group of unselected BC patients. Two patients from the latter group developed an increased early skin reaction to RT, which was associated with an increased initial DNA fragmentation in vitro only in one of them. Cells from the other BC patient exhibited a striking slope in the dose–response curve detected by the G2 MN test. We also found that previous RT strongly increased both spontaneous and in vitro radiation-induced MN levels, and to a lesser extent, the radiation-induced DNA damage assessed by the Comet assay. These data suggest that clinical radiation may provoke genetic instability and/or induce persistent DNA damage in normal cells of cancer patients, thus leading to increased levels of MN induction and DNA fragmentation after irradiation in vitro. Therefore, care has to be taken when blood samples collected postradiotherapeutically are used to assess the radiosensitivity of cancer patients.


Radiation Oncology | 2013

Radiosensitivity in breast cancer assessed by the histone γ-H2AX and 53BP1 foci

Cholpon S. Djuzenova; Ines Elsner; Astrid Katzer; Eike Worschech; Luitpold Distel; Michael Flentje; Bülent Polat

BackgroundHigh expression of constitutive histone γ-H2AX, a sensitive marker of DNA damage, might be indicative of defective DNA repair pathway or genomic instability. 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. This study explores the relationship between the clinical radiosensitivity of tumor patients and the expression/induction of γ-H2AX and 53BP1 in vitro.MethodsUsing immunostaining, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53 BP1 in peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=57) undergoing radiotherapy (RT). Cells from apparently healthy donors (n=12) served as references.ResultsNon-irradiated cells from controls and unselected BC patients exhibited similar baseline levels of DNA damage assessed by γ-H2AX and 53BP1 foci. At the same time, the γ-H2AX assay of in vitro irradiated cells revealed significant differences between the control group and the group of unselected BC patients with respect to the initial (0.5 Gy, 30 min) and residual (2 Gy, 24 h post-radiation) DNA damage. The numbers of 53BP1 foci analyzed in 35 BC patients were significantly higher than in controls only in case of residual DNA damage. A weak correlation was found between residual foci of both proteins tested. In addition, cells from cancer patients with an adverse acute skin reaction (grade 3) to RT showed significantly increased radiation-induced γ-H2AX foci and their protracted disappearance compared to the group of BC patients with normal skin reaction (grade 0–1). The mean number of γ-H2AX foci after 5 clinical fractions was significantly higher than that before RT, especially in clinically radiosensitive patients.ConclusionsThe γ-H2AX assay may have potential for screening individual radiosensitivity of breast cancer patients.Trial registrationhttp://www.krebshilfe.de/wir-foerdern.html


The Journal of Membrane Biology | 1994

DNA, protein, and plasma-membrane incorporation by arrested mammalian cells

Vladimir L. Sukhorukov; Cholpon S. Djuzenova; W.M. Arnold; U. Zimmermann

Incorporation of DNA, protein, and plasma membrane during blockage by aphidicolin or by doxorubicin was studied by flow cytometry and electrorotation of three cell lines (mouse-myeloma Sp2/0-Ag14, hybridoma H73C11, and fibroblast-like L929 cells). Drug-mediated arrest at the G1-S boundary (aphidicolin) or in G2/M (doxorubicin) did not arrest synthesis of either protein or total membrane area, the increases in which outstripped growth in cell volume and apparent cell area, respectively. Measurements of membrane capacity in normal and hypo-osmotic media showed that the drugs had not changed the fundamental bilayer, but that an increase in the number or size of microvilli must have occurred. Aphidicolin-arrested cells withstood hypo-osmotic stress better than untreated cells could, indicating that the membrane excess can be utilized as a reserve during rapid cell expansion.Hypo-osmotically treated cell populations exhibited only about half the coefficient of variance (CV) in membrane properties of cells at physiological osmolality. Populations of arrested cells exhibited the same high CV as asynchronous cells, indicating that chemical arrest does not give uniformly villated cell populations. However, the lowest CV values were given by some synchronized (aphidicolin-blocked, then released) populations.Removal of aphidicolin allowed most cells to progress through S and G2, and then divide. During these processes, the membrane excess was reduced. After removal of doxorubicin, the cells did not divide: some continued protein synthesis, grew abnormally large, and further increased their membrane excess.Membrane breakdown by electric pulsing (3 X 5kV/cm, 40 μsec decay time) of aphidicolin-synchronized L cells in G2/M led to a 22% loss of plasma membrane (both the area-specific and the whole-cell capacitance were reduced), presumably via endocytosislike vesiculation.


British Journal of Cancer | 2004

Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients

Cholpon S. Djuzenova; B Mühl; R Schakowski; U Oppitz; Michael Flentje

About 5% of oncology patients treated by radiation therapy develop acute or late radiotoxic effects whose molecular mechanisms remain poorly understood. In this study, we evaluated the potential role of DNA repair proteins in the hypersensitivity of cancer patients to radiation therapy. The expression levels and focal nuclear distribution of DNA repair proteins, hMre11, Rad50 and Rad51 were investigated in skin fibroblasts strains derived from cancer patients with adverse early skin reaction to radiotherapy using Western blot and foci immunofluorescence techniques, respectively. Cells from cancer patients with normal reaction to radiotherapy as well as cells from apparently healthy subjects served as controls. Cellular radiosensitivity after in vitro irradiation was assessed by the clonogenic survival assay. The clonogenic survival assay and Western blot analysis of the DNA repair proteins did not reveal any abnormalities in cellular radiosensitivity in vitro and in protein expression levels or their migration patterns in the fibroblasts derived from cancer patients with hypersensitive reaction to radiotherapy. In contrast, in vitro irradiated cells from radiosensitive patients exhibited a significantly higher number of nuclei with focally concentrated Rad50 protein than in both control groups. The observed alteration of the distribution of radiation-induced Rad50 foci in cells derived from cancer patients with acute side reactions to radiotherapy might contribute to their radiation therapy outcome. These data suggest the usefulness of the Rad50 foci analysis for predicting clinical response of cancer patients to radiotherapy.


Neuroscience Letters | 2012

Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the upregulation of glucose uptake after subsequent reoxygenation in brain endothelial cells

Winfried Neuhaus; Malgorzata Burek; Cholpon S. Djuzenova; Serge C. Thal; Hermann Koepsell; Norbert Roewer; Carola Förster

During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7-fold after 6h OGD, which was significantly reduced by 10μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6h OGD and was still higher (210%) after the 20h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.


Cancer Letters | 2013

Hsp90 inhibition by NVP-AUY922 and NVP-BEP800 decreases migration and invasion of irradiated normoxic and hypoxic tumor cell lines

Susanne Hartmann; Nadine Günther; Marlene Biehl; Astrid Katzer; Sebastian Kuger; Eike Worschech; Vladimir L. Sukhorukov; Georg Krohne; Heiko Zimmermann; Michael Flentje; Cholpon S. Djuzenova

This study explores the impact of Hsp90 inhibitors NVP-AUY922 and NVP-BEP800 in combination with ionizing radiation (IR) on the migration and invasion of lung carcinoma A549 and glioblastoma SNB19 cells, under normoxia or hypoxia. Independent of oxygen concentration, both drugs decreased the migration and invasion rates of non-irradiated tumor cells. Combined drug-IR treatment under hypoxia inhibited cell invasion to a greater extent than did each treatment alone. Decreased migration of cells correlated with altered expression of several matrix-associated proteins (FAK/p-FAK, Erk2, RhoA) and impaired F-actin modulation. The anti-metastatic efficacy of the Hsp90 inhibitors could be useful in combinational therapies of cancer.


Cancer Biology & Therapy | 2012

Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia

Cholpon S. Djuzenova; Christina Blassl; Konstanze Roloff; Sebastian Kuger; Astrid Katzer; Natalia Niewidok; Nadine Günther; Bülent Polat; Vladimir L. Sukhorukov; Michael Flentje

NVP-AUY922, a novel inhibitor of Hsp90, was shown to enhance the effect of ionizing radiation (IR) on tumor cells under normoxic conditions. Since low oxygen tension is a common feature of solid tumors, we explore in the present study the impact of hypoxia on the combined treatment of lung carcinoma A549 and glioblastoma SNB19 cell lines with NVP-AUY922 and IR. Cellular analysis included the colony-forming ability, expression of CAIX, Hsp90, Hsp70, Raf-1, Akt, cell cycle progression and associated proteins, as well as DNA damage measured by histone γH2AX. The clonogenic assay revealed that in both cell lines NVP-AUY922 enhanced the radiotoxicity under hypoxic exposure to a level similar to that observed under oxic conditions. Irrespective of oxygen supply during drug treatment, NVP-AUY922 also reduced the expression of anti-apoptotic proteins Raf-1 and Akt. As judged by the levels of histone γH2AX, drug-treated hypoxic cells exhibited a lower repair rate of DNA double-strand breaks than normoxic cells. The drug-IR mediated changes in the cell cycle, i.e., S-phase depletion and G2/M arrest, developed not directly during hypoxic exposure but first upon 24 h reoxygenation. Under both oxygen tensions, Hsp90 inhibition downregulated the cell cycle-associated proteins, Cdk1, Cdk4 and pRb. The finding that NVP-AUY922 can enhance the in vitro radiosensitivity of hypoxic tumor cells may have implications for the combined modality treatment of solid tumors.


PLOS ONE | 2014

Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

Simon Memmel; Vladimir L. Sukhorukov; Marcus Höring; Katherine Westerling; Vanessa Fiedler; Astrid Katzer; Georg Krohne; Michael Flentje; Cholpon S. Djuzenova

Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo−/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest C m values of 3.7–4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.

Collaboration


Dive into the Cholpon S. Djuzenova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge