Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chong-Sheng Chen is active.

Publication


Featured researches published by Chong-Sheng Chen.


Drug Metabolism and Disposition | 2005

ENANTIOSELECTIVE METABOLISM AND CYTOTOXICITY OF R-IFOSFAMIDE AND S-IFOSFAMIDE BY TUMOR CELL-EXPRESSED CYTOCHROMES P450

Chong-Sheng Chen; Youssef Jounaidi; David J. Waxman

The anticancer prodrug ifosfamide (IFA) contains a chiral phosphorous atom and is administered in the clinic as a racemic mixture of R-IFA and S-IFA. Hepatic cytochrome P450 (P450) enzymes exhibit enantioselective preferences in the metabolism of R-IFA and S-IFA; however, the impact of this selectivity on P450-dependent anticancer activity is not known. Presently, the metabolism and cytotoxicity of R-IFA and S-IFA were determined in 9L gliosarcoma and Chinese hamster ovary tumor cells expressing an IFA-activating P450 enzyme and by in vitro steady-state kinetic analysis using cDNA-expressed P450 enzymes. Tumor cells expressing P450 enzyme CYP3A4 were the most sensitive to R-IFA cytotoxicity, whereas tumor cells expressing CYP2B1 or CYP2B6 were most sensitive to cyclophosphamide (CPA), an isomer of IFA. Correspondingly, CYP3A4-expressing cells and cDNA-expressed CYP3A4 metabolized R-IFA to yield the active, 4-hydroxylated metabolite at a 2- to 3-fold higher rate than they metabolized S-IFA or CPA. CYP2B cells and cDNA-expressed CYP2B enzymes metabolized CPA almost exclusively by 4-hydroxylation, whereas R-IFA and S-IFA were substantially converted to inactive, N-dechloroethylated metabolites. Further investigation revealed that CYP3A1, a rat enzyme, exhibited superior kinetic properties compared with the human enzyme CYP3A4, with R-IFA and S-IFA both metabolized with high catalytic efficiency by 4-hydroxylation and with a Km value of 200 μM, ∼5-fold lower than CYP3A4. Based on these kinetic parameters and metabolic profiles, R-IFA is expected to exert greater anticancer activity than S-IFA or CPA against tumors that express CYP3A enzymes, whereas tumors expressing CYP2B enzymes may be more sensitive to CPA treatment.


Molecular Cancer Therapeutics | 2006

Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydroxylase P450 2B11

Youssef Jounaidi; Chong-Sheng Chen; Gareth J. Veal; David J. Waxman

Gene therapy using the prodrug-activating enzyme P450 2B6 has shown substantial promise in preclinical and initial clinical studies with the P450 prodrugs cyclophosphamide and ifosfamide. We sought to optimize this therapy using the canine P450 enzyme 2B11, which activates cyclophosphamide and ifosfamide with Km of 80 to 160 μmol/L, ∼10- to 20-fold lower than the Km of P450 2B6. Retrovirus encoding a P450 2B11-internal ribosome entry signal-P450 reductase expression cassette induced marked cyclophosphamide and ifosfamide cytotoxicity toward 9L gliosarcoma cells and exhibited an impressive bystander killing effect at micromolar prodrug concentrations, where P450 2B6 displayed low activity. Adeno-2B11, a replication-defective, E1/E3 region-deleted adenovirus engineered to coexpress P450 2B11 and P450 reductase, dramatically increased tumor cell-catalyzed cyclophosphamide 4-hydroxylation and cytotoxicity compared with Adeno-2B6 and effected strong bystander killing at low (20 μmol/L) cyclophosphamide concentrations. Further increases in cyclophosphamide cytotoxicity were obtained in several human cancer cell lines, including a 4-hydroperoxycyclophosphamide-resistant MCF-7 breast cancer cell line, when Adeno-2B11 was combined with Onyx-017, an E1b-55-kDa gene-deleted, tumor cell-replicating adenovirus that coamplifies and facilitates tumor cell spread of Adeno-2B11. To evaluate the therapeutic effect of P450 2B11 expression in vivo, 9L gliosarcoma cells transduced with P450-expressing retrovirus were grown as solid s.c. tumors in immunodeficient mice. Cyclophosphamide treatment on a metronomic, 6-day repeating schedule led to full regression of 9L/2B11 tumors but not P450-deficient control tumors, resulting in a tumor-free period lasting up to ∼100 days. 9L/2B6 tumors regressed more slowly and exhibited a tumor-free period of only 21 to 39 days. Thus, P450 gene-directed enzyme prodrug therapy can be greatly improved by using the low Km P450 enzyme 2B11, which catalyzes intratumoral activation of cyclophosphamide and ifosfamide at pharmacologically relevant drug concentrations. [Mol Cancer Ther 2006;5(3):541–55]


Cancer Research | 2011

Antiangiogenesis Enhances Intratumoral Drug Retention

Chong-Sheng Chen; Todd Blute; David J. Waxman

The tumor vasculature delivers nutrients, oxygen, and therapeutic agents to tumor cells. Unfortunately, the delivery of anticancer drugs through tumor blood vessels is often inefficient and can constitute an important barrier for cancer treatment. This barrier can sometimes be circumvented by antiangiogenesis-induced normalization of tumor vasculature. However, such normalizing effects are transient; moreover, they are not always achieved, as shown here, when 9L gliosarcoma xenografts were treated over a range of doses with the VEGF receptor-selective tyrosine kinase inhibitors axitinib and AG-028262. The suppression of tumor blood perfusion by antiangiogenesis agents can be turned to therapeutic advantage, however, through their effects on tumor drug retention. In 9L tumors expressing the cyclophosphamide-activating enzyme P450 2B11, neoadjuvant axitinib treatment combined with intratumoral cyclophosphamide administration significantly increased tumor retention of cyclophosphamide and its active metabolite, 4-hydroxycyclophosphamide. Similar increases were achieved using other angiogenesis inhibitors, indicating that increased drug retention is a general response to antiangiogenesis. This approach can be extended to include systemic delivery of an anticancer prodrug that is activated intratumorally, where antiangiogenesis-enhanced retention of the therapeutic metabolite counterbalances the decrease in drug uptake from systemic circulation, as exemplified for cyclophosphamide. Importantly, the increase in intratumoral drug retention induced by neoadjuvant antiangiogenic drug treatment is shown to increase tumor cell killing and substantially enhance therapeutic activity in vivo. Thus, antiangiogenic agents can be used to increase tumor drug exposure and improve therapeutic activity following intratumoral drug administration, or following systemic drug administration in the case of a therapeutic agent that is activated intratumorally.


Journal of Pharmacology and Experimental Therapeutics | 2007

A Mouse Model with Liver-Specific Deletion and Global Suppression of the NADPH-Cytochrome P450 Reductase Gene: Characterization and Utility for in Vivo Studies of Cyclophosphamide Disposition

Jun Gu; Chong-Sheng Chen; Yuan Wei; Cheng Fang; Fang Xie; Kurunthachalam Kannan; Weizhu Yang; David J. Waxman; Xinxin Ding

A mouse model combining liver-specific deletion with global suppression of the NADPH-cytochrome P450 reductase gene (Cpr) has been developed and characterized. These mice (designated “Cpr-low and liver-Cpr-null” or CL-LCN) retain the respective phenotypes of the previously reported Cpr-low (CL) and liver-Cpr-null (LCN) mouse strains, but hepatic deletion of the Cpr gene occurs at an earlier age in the CL-LCN mouse than in the LCN mouse. Residual hepatic microsomal CPR activities are very low in both CL-LCN and LCN mice (at 1.5 and 2.5% of wild-type levels, respectively). The utility of CL-LCN mice for in vivo drug metabolism studies was explored using the cytochrome P450 (P450) prodrug cyclophosphamide (CPA). After i.p. injection of CPA at 100 mg/kg, the t1/2 and the area under the concentration-time curve for plasma CPA were significantly increased in mice deficient in liver CPR compared with wild-type controls, indicating a lower rate of metabolism, with the effects greater in CL-LCN mice than in LCN mice. Correspondingly, substantial decreases in Cmax, and increases in Tmax, and t1/2, of 4-hydroxycyclophosphamide (4-OH-CPA) formation were observed in both LCN and CL-LCN mice relative to wild-type controls. In contrast, CPA and 4-OH-CPA pharmacokinetic parameters were essentially unchanged in CL mice, relative to wild-type controls. The slower elimination of CPA in CL-LCN mice compared with LCN mice suggests a role for extrahepatic P450 in the in vivo metabolism of CPA and demonstrates the utility of the CL-LCN model in determining the role of extrahepatic P450 enzymes in drug metabolism and chemical toxicity.


Cancer Gene Therapy | 2003

Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy

Pamela S. Schwartz; Chong-Sheng Chen; David J. Waxman

Cytochrome P450-based gene therapy can substantially increase the sensitivity of tumor cells to P450-activated cancer chemotherapeutic prodrugs such as cyclophosphamide (CPA) without increasing host toxicity. While the role of 4-OH-CPA, the primary active metabolite of CPA, in eliciting tumor cell death is well established, the effect of 4-OH-CPA exposure on the capacity of P450-expressing tumor cells for continued metabolism and activation of CPA has not been investigated. The present study addresses this question and characterizes the impact of CPA dose and treatment schedule on the ability of P450-expressing tumor cells to sustain prodrug activation over time. 9L gliosarcoma cells expressing human P450 2B6 and treated with CPA in a continuous manner exhibited a time- and CPA dose-dependent decrease in P450-catalyzed CPA 4-hydroxylase activity. This decrease reflects a selective, 4-OH-CPA-induced loss of cellular P450 protein content. By contrast, when the P450-expressing tumor cells were treated with CPA as a single 8 hours exposure, cellular CPA 4-hydroxylase activity and P450 protein expression were substantially prolonged when compared to continuous prodrug treatment. This schedule-dependent effect of CPA was influenced by the level of P450 protein expressed in the tumor cells. At high P450 protein and activity levels, which could be achieved by culturing the tumor cells at high cell density, net production and release of 4-OH-CPA into the culture media was increased substantially. This increase fully offset the decline in CPA 4-hydroxylase activity as the tumor cells underwent CPA-induced apoptotic death. These findings demonstrate the impact of CPA dose and treatment schedule on the efficacy of P450 gene-directed enzyme prodrug therapy, with bolus CPA treatment being compatible with sustained expression of P450 protein and maintenance of P450-dependent prodrug activation by the target tumor tissue.


Cancer Gene Therapy | 2009

Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer.

Hong Lu; Chong-Sheng Chen; David J. Waxman

Preclinical and clinical studies of CYP gene-directed enzyme prodrug therapy have been focused on anticancer prodrugs activated by CYP2B enzymes, which have low endogenous expression in human liver; however, the gene therapeutic potential of CYP3A enzymes, which are highly expressed in human liver, remains unknown. This study investigated methoxymorpholinyl doxorubicin (MMDX; nemorubicin), a novel CYP3A-activated anticancer prodrug. Retroviral transfer of CYP3A4 increased 9L gliosarcoma cell chemosensitivity to MMDX 120-fold (IC50=0.2 nM in 9L/3A4 cells). In CHO cells, overexpression of P450 reductase in combination with CYP3A4 enhanced chemosensitivity to MMDX, and to ifosfamide, another CYP3A4 prodrug, 11- to 23-fold compared with CYP3A4 expression alone. CYP3A4 expression and MMDX chemosensitivity were increased in human lung (A549) and brain (U251) tumor cells infected with replication-defective adenovirus encoding CYP3A4. Coinfection with Onyx-017, a replication-conditional adenovirus that coamplifies and coreplicates the Adeno-3A4 virus, led to large increases in CYP3A4 RNA but only modest increases in CYP3A4 protein and activity. MMDX induced remarkable growth delay of 9L/3A4 tumors, but not the P450-deficient parental 9L tumors, in immunodeficient mice administered low-dose MMDX either intravenous or by direct intratumoral (i.t.) injection (60 μg kg−1, every 7 days × 3). Notably, the i.t. route was substantially less toxic to the mouse host. No antitumor activity was observed with intraperitoneal MMDX treatment, suggesting a substantial hepatic first pass effect, with activated MMDX metabolites formed in the liver having poor access to the tumor site. These studies demonstrate that human CYP3A4 has strong potential for MMDX prodrug-activation therapy and suggest that endogenous tumor cell expression of CYP3A4, and not hepatic CYP3A4 activity, is a key determinant of responsiveness to MMDX therapy in cancer patients in vivo.


Cancer Gene Therapy | 2007

Enhancement of intratumoral cyclophosphamide pharmacokinetics and antitumor activity in a P450 2B11-based cancer gene therapy model.

Chong-Sheng Chen; Youssef Jounaidi; Ting Su; David J. Waxman

The therapeutic utility of cytochrome P450-based enzyme prodrug therapy is well established by preclinical studies and in initial clinical trials. The underlying premise of this gene therapy is that intratumoral P450 expression leads to in situ activation of anticancer P450 prodrugs, such as cyclophosphamide (CPA), with intratumoral accumulation of its activated 4-OH metabolite. In mice bearing 9L gliosarcomas expressing the CPA 4-hydroxylase P450 2B6, enhanced tumor apoptosis was observed 48 h after CPA treatment; however, intratumoral 4-OH-CPA levels were indistinguishable from those of P450-deficient tumors, indicating that the bulk of activated CPA is derived from hepatic metabolism. In contrast, in 9L tumors expressing P450 2B11, a low Km CPA 4-hydroxylase, intratumoral 4-OH-CPA levels were higher than in blood, liver and P450-deficient tumors. Intratumoral 4-OH-CPA increased dose-dependently, without saturation at 140 mg kg−1 CPA, suggesting restricted tumor cell permeation of the parent drug. To circumvent this problem, CPA was administered by direct intratumoral injection, which increased the maximum concentration and area under the curve of drug concentration × time (AUC) of intratumoral 4-OH-CPA by 1.8- and 2.7-fold, respectively. An overall 3.9-fold increase in intratumoral 4-OH-CPA AUC, and in antitumor activity, was obtained when CPA release to systemic circulation was delayed using the slow-release polymer poloxamer 407 as vehicle for intratumoral CPA delivery. These findings highlight the advantage of gene therapy strategies that combine low Km P450 prodrug activation enzymes with slow, localized release of P450 prodrug substrates.


Molecular Cancer | 2014

Anti-tumor innate immunity activated by intermittent metronomic cyclophosphamide treatment of 9L brain tumor xenografts is preserved by anti-angiogenic drugs that spare VEGF receptor 2

Chong-Sheng Chen; David J. Waxman

BackgroundMetronomic cyclophosphamide given on an intermittent, 6-day repeating schedule, but not on an exposure dose-equivalent daily schedule, activates an anti-tumor innate immune response that leads to major regression of large implanted gliomas, without anti-angiogenesis.Methods and approachMice bearing implanted 9L gliomas were used to investigate the effects of this 6-day repeating, immunogenic cyclophosphamide schedule on myeloid-derived suppressor cells, which are pro-angiogenic and can inhibit anti-tumor immunity, and to elucidate the mechanism whereby the innate immune cell-dependent tumor regression response to metronomic cyclophosphamide treatment is blocked by several anti-angiogenic receptor tyrosine kinase inhibitors.ResultsIntermittent metronomic cyclophosphamide scheduling strongly increased glioma-associated CD11b+ immune cells but not CD11b+Gr1+ myeloid-derived suppressor cells, while bone marrow and spleen reservoirs of the suppressor cells were decreased. The inhibition of immune cell recruitment and tumor regression by anti-angiogenic receptor tyrosine kinase inhibitors, previously observed in several brain tumor models, was recapitulated in the 9L tumor model with the VEGFR2-specific inhibitory monoclonal antibody DC101 (p < 0.01), implicating VEGFR2 signaling as an essential step in metronomic cyclophosphamide-stimulated immune cell recruitment. In contrast, sorafenib, a multi-receptor tyrosine kinase inhibitor with comparatively weak VEGF receptor phosphorylation inhibitory activity, was strongly anti-angiogenic but did not block metronomic cyclophosphamide-induced innate immunity or tumor regression (p > 0.05).ConclusionsThe interference by receptor tyrosine kinase inhibitors in the immunogenic actions of intermittent metronomic chemotherapy is not a consequence of anti-angiogenesis per se, as demonstrated in an implanted 9L tumor model. Furthermore, this undesirable interaction with tyrosine kinase inhibitors can be avoided by using anti-angiogenic drugs that spare the VEGFR2 pathway.


Cancer Research | 2013

Abstract A87: Metronomic chemotherapy activates innate immunity-induced tumor regression.

David J. Waxman; Chong-Sheng Chen; Junjie Wu

Metronomic chemotherapy involves frequent drug administration at a lower than maximally tolerated dose to reduce the severe, dose-limiting toxicities of conventional drug schedules. Some metronomic regimens are anti-angiogenic, reflecting the high chemosensitivity of tumor endothelial cells to metronomic schedules of cytotoxic drugs. However, the significance of the anti-angiogenic activity of metronomic chemotherapy is unclear, as VEGF receptor inhibitors induce substantially greater anti-angiogenesis than metronomic chemotherapy, yet often show less anti-tumor activity. Recently, we reported that cyclophosphamide, when given on a 6-day repeating metronomic schedule to mice bearing brain tumor xenografts, activates potent anti-tumor innate immunity, with tumor recruitment of macrophages, dendritic cells and natural killer cells leading to major tumor regression. Immune cell recruitment and tumor regression were both blocked in mice where innate immune cells are either deficient or dysfunctional. Furthermore, VEGF receptor-selective inhibitors blocked these responses, suggesting that their use in the clinic may interfere with anti-tumor immunity (Doloff JC and Waxman DJ, Cancer Research (2012) 72:1103-1115). We now report that this interference by VEGF receptor-selective inhibitors is not due to anti-angiogenesis per se, and that it can be avoided by using anti-angiogenic drugs that do not act primarily by VEGF receptor inhibition. Furthermore, traditional high-dose (MTD) chemotherapy induced an innate immune response that was transient, and weak, suggesting that sustained drug-induced cytotoxic damage and their associated cytokine responses are required for immune-based tumor regression. Indeed, several innate-immune recruiting chemokines showed sustained up regulation following metronomic cyclophosphamide treatment but were only transiently up regulated by traditional MTD drug treatment. Metronomic cyclophosphamide was cytotoxic to the tumor infiltrating immune cells, especially to natural killer cells and dendritic cells. Consistently, we found that both the dose and the timing of metronomic drug treatment are critical, with innate immune responses and tumor regression both lost when the frequency of metronomic cyclophosphamide administration was increased from once/6 days to once/3 days without a change in total dose, or to a daily metronomic regimen commonly used in the clinic. Thus, both the dose and the frequency of metronomic drug administration must be sufficiently high to activate tumor damage and immune anti-tumor response pathways, but also sufficiently well-spaced so as to not kill off the infiltrating anti-tumor immune populations, which are sensitive to chemotherapy. These findings suggest that current clinical metronomic treatment schedules can be optimized to enhance anti-tumor immunity; furthermore, they highlight the potential for negative interactions between innate immune anti-tumor responses and VEGF pathway-targeted anti-angiogenic drugs. Supported in part by NIH grant CA49248 (to DJW). Citation Format: David J. Waxman, Chong-Sheng Chen, Junjie Wu, Joshua C. Doloff. Metronomic chemotherapy activates innate immunity-induced tumor regression. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; Dec 2-5, 2012; Miami, FL. Philadelphia (PA): AACR; Cancer Res 2013;73(1 Suppl):Abstract nr A87.


Molecular Pharmacology | 2004

Activation of the Anticancer Prodrugs Cyclophosphamide and Ifosfamide: Identification of Cytochrome P450 2B Enzymes and Site-Specific Mutants with Improved Enzyme Kinetics

Chong-Sheng Chen; Jack T. Lin; Kendrick A. Goss; You-ai He; James R. Halpert; David J. Waxman

Collaboration


Dive into the Chong-Sheng Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge