Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Hunter is active.

Publication


Featured researches published by Chris Hunter.


Nature | 2007

Patterns of somatic mutation in human cancer genomes

Christopher Greenman; Philip Stephens; Raffaella Smith; Gillian L. Dalgliesh; Chris Hunter; Graham R. Bignell; Helen Davies; Jon Teague; Adam Butler; Claire Stevens; Sarah Edkins; Sarah O’Meara; Imre Vastrik; Esther Schmidt; Tim Avis; Syd Barthorpe; Gurpreet Bhamra; Gemma Buck; Bhudipa Choudhury; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kris Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jon Hinton; Andy Jenkinson; David Jones

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274u2009megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Cancer Research | 2005

Somatic Mutations of the Protein Kinase Gene Family in Human Lung Cancer

Helen Davies; Chris Hunter; Raffaella Smith; Philip Stephens; Christopher Greenman; Graham R. Bignell; Jon W. Teague; Adam Butler; Sarah Edkins; Claire Stevens; Adrian Parker; Sarah O'Meara; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Jody Clements; Jennifer Cole; Ed Dicks; Ken Edwards; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; David Jones; Vivienne Kosmidou; Ross Laman

Protein kinases are frequently mutated in human cancer and inhibitors of mutant protein kinases have proven to be effective anticancer drugs. We screened the coding sequences of 518 protein kinases (approximately 1.3 Mb of DNA per sample) for somatic mutations in 26 primary lung neoplasms and seven lung cancer cell lines. One hundred eighty-eight somatic mutations were detected in 141 genes. Of these, 35 were synonymous (silent) changes. This result indicates that most of the 188 mutations were passenger mutations that are not causally implicated in oncogenesis. However, an excess of approximately 40 nonsynonymous substitutions compared with that expected by chance (P = 0.07) suggests that some nonsynonymous mutations have been selected and are contributing to oncogenesis. There was considerable variation between individual lung cancers in the number of mutations observed and no mutations were found in lung carcinoids. The mutational spectra of most lung cancers were characterized by a high proportion of C:G > A:T transversions, compatible with the mutagenic effects of tobacco carcinogens. However, one neuroendocrine cancer cell line had a distinctive mutational spectrum reminiscent of UV-induced DNA damage. The results suggest that several mutated protein kinases may be contributing to lung cancer development, but that mutations in each one are infrequent.


Molecular Cancer Therapeutics | 2006

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set

Ogechi N. Ikediobi; Helen Davies; Graham R. Bignell; Sarah Edkins; Claire Stevens; Sarah O'Meara; Thomas Santarius; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathan Hinton; Chris Hunter; Andy Jenkinson; David Jones; Vivienne Kosmidou; Richard Lugg; Andrew Menzies; Tatiana Mironenko; Adrian Parker; Janet Perry

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens. [Mol Cancer Ther 2006;5(11):2606–12]


Nature Biotechnology | 2011

Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

Pelin Yilmaz; Renzo Kottmann; Dawn Field; Rob Knight; James R. Cole; Linda A. Amaral-Zettler; Jack A. Gilbert; Ilene Karsch-Mizrachi; Anjanette Johnston; Guy Cochrane; Robert Vaughan; Chris Hunter; Joonhong Park; Norman Morrison; Philippe Rocca-Serra; Peter Sterk; Manimozhiyan Arumugam; Mark J. Bailey; Laura K. Baumgartner; Bruce W. Birren; Martin J. Blaser; Vivien Bonazzi; Tim Booth; Peer Bork; Frederic D. Bushman; Pier Luigi Buttigieg; Patrick Chain; Emily S. Charlson; Elizabeth K. Costello; Heather Huot-Creasy

Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The environmental packages apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.


Nature Genetics | 2005

A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer

Philip Stephens; Sarah Edkins; Helen Davies; Christopher Greenman; Charles Cox; Chris Hunter; Graham R. Bignell; Jon Teague; Raffaella Smith; Claire Stevens; Sarah O'Meara; Adrian Parker; Patrick Tarpey; Tim Avis; Andy Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Ken Edwards; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; David Jones

We examined the coding sequence of 518 protein kinases, ∼1.3 Mb of DNA per sample, in 25 breast cancers. In many tumors, we detected no somatic mutations. But a few had numerous somatic mutations with distinctive patterns indicative of either a mutator phenotype or a past exposure.


Cancer Research | 2006

A Hypermutation Phenotype and Somatic MSH6 Mutations in Recurrent Human Malignant Gliomas after Alkylator Chemotherapy

Chris Hunter; Raffaella Smith; Daniel P. Cahill; Philip Stephens; Claire Stevens; Jon Teague; Christopher Greenman; Sarah Edkins; Graham R. Bignell; Helen Davies; Sarah O'Meara; Adrian Parker; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; Andy Jenkinson; David Jones; Vivienne Kosmidou

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Cancer Biology & Therapy | 2006

Recurrent KRAS Codon 146 Mutations in Human Colorectal Cancer

Sarah Edkins; Sarah O'Meara; Adrian Parker; Claire Stevens; Marcelo Reis; Siân Jones; Christopher Greenman; Helen Davies; Gillian L. Dalgliesh; Simon A. Forbes; Chris Hunter; Raffaella Smith; Philip Stephens; Peter Goldstraw; Andrew G. Nicholson; Tsun Leung Chan; Victor E. Velculescu; Siu Tsan Yuen; Suet Yi Leung; Michael R. Stratton; P. Andrew Futreal

An activating point mutation in codon 12 of the HRAS gene was the first somatic point mutation identified in a human cancer and established the role of somatic mutations as the common driver of oncogenesis. Since then, there have been over 11,000 mutations in the three RAS (HRAS, KRAS and NRAS) genes in codons 12, 13 and 61 reported in the literature. We report here the identification of recurrent somatic missense mutations at alanine 146, a highly conserved residue in the guanine nucleotide binding domain. In two independent series of colorectal cancers from Hong Kong and the United States we detected KRAS A146 mutations in 7/126 and 2/94 cases, respectively, giving a combined frequency of 4%. We also detected KRAS A146 mutations in 2/40 (5%) colorectal cell lines, including the NCI-60 colorectal cancer line HCC2998. Codon 146 mutations thus are likely to make an equal or greater contribution to colorectal cancer than codon 61 mutations (1.3% in our combined series, 1% in the literature). Lung adenocarcinomas and large cell carcinomas did not show codon 146 mutations. We did, however, identify a KRAS A146 mutation in the ML-2 acute myeloid leukemia cell line and an NRAS A146 mutation in the NALM-6 B-cell acute lymphoblastic leukemia line, suggesting that the contribution of codon 146 mutations is not entirely restricted to colorectal cancers or to KRAS.


Nucleic Acids Research | 2009

Petabyte-scale innovations at the European Nucleotide Archive

Guy Cochrane; Ruth Akhtar; James K. Bonfield; Lawrence Bower; Fehmi Demiralp; Nadeem Faruque; Richard Gibson; Gemma Hoad; Tim Hubbard; Chris Hunter; Mikyung Jang; Szilveszter Juhos; Rasko Leinonen; Steven Leonard; Quan Lin; Rodrigo Lopez; Dariusz Lorenc; Hamish McWilliam; Gaurab Mukherjee; Sheila Plaister; Rajesh Radhakrishnan; Stephen Robinson; Siamak Sobhany; Petra ten Hoopen; Robert Vaughan; Vadim Zalunin; Ewan Birney

Dramatic increases in the throughput of nucleotide sequencing machines, and the promise of ever greater performance, have thrust bioinformatics into the era of petabyte-scale data sets. Sequence repositories, which provide the feed for these data sets into the worldwide computational infrastructure, are challenged by the impact of these data volumes. The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/embl), comprising the EMBL Nucleotide Sequence Database and the Ensembl Trace Archive, has identified challenges in the storage, movement, analysis, interpretation and visualization of petabyte-scale data sets. We present here our new repository for next generation sequence data, a brief summary of contents of the ENA and provide details of major developments to submission pipelines, high-throughput rule-based validation infrastructure and data integration approaches.


Genes, Chromosomes and Cancer | 2006

Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults

Graham R. Bignell; Raffaella Smith; Chris Hunter; Philip Stephens; Helen Davies; Christopher Greenman; Jon Teague; Adam Butler; Sarah Edkins; Claire Stevens; Sarah O'Meara; Adrian Parker; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Jody Clements; Jennifer Cole; Ed Dicks; Ken Edwards; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; David Jones; Vivienne Kosmidou; Ross Laman

The protein kinase gene family is the most frequently mutated in human cancer. Previous work has documented activating mutations in the KIT receptor tyrosine kinase in testicular germ‐cell tumors (TGCT). To investigate further the potential role of mutated protein kinases in the development of TGCT and to characterize the prevalence and patterns of point mutations in these tumors, we have sequenced the coding exons and splice junctions of the annotated protein kinase family of 518 genes in a series of seven seminomas and six nonseminomas. Our results show a remarkably low mutation frequency, with only a single somatic point mutation, a K277E mutation in the STK10 gene, being identified in a total of more than 15 megabases of sequence analyzed. Sequencing of STK10 in an additional 40 TGCTs revealed no further mutations. Comparative genomic hybridization and LOH analysis using SNP arrays demonstrated that the 13 TGCTs mutationally screened through the 518 protein kinase genes were uniformly aneuploid with consistent chromosomal gains on 12p, 8q, 7, and X and losses on 13q, 18q, 11q, and 4q. Our results do not provide evidence for a mutated protein kinase implicated in the development of TGCT other than KIT. Moreover, they demonstrate that the general prevalence of point mutations in TGCT is low, in contrast to the high frequency of copy number changes.


Nucleic Acids Research | 2014

EBI metagenomics—a new resource for the analysis and archiving of metagenomic data

Sarah Hunter; Matthew Corbett; Hubert Denise; Matthew Fraser; Alejandra Gonzalez-Beltran; Chris Hunter; Philip Jones; Rasko Leinonen; Craig McAnulla; Eamonn Maguire; John Maslen; Alex L. Mitchell; Gift Nuka; Arnaud Oisel; Sebastien Pesseat; Rajesh Radhakrishnan; Philippe Rocca-Serra; Maxim Scheremetjew; Peter Sterk; Daniel Vaughan; Guy Cochrane; Dawn Field; Susanna-Assunta Sansone

Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.

Collaboration


Dive into the Chris Hunter's collaboration.

Top Co-Authors

Avatar

Claire Stevens

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Helen Davies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah Edkins

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Simon A. Forbes

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Adam Butler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Adrian Parker

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ed Dicks

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Graham R. Bignell

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer Cole

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge