Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris S. Smillie is active.

Publication


Featured researches published by Chris S. Smillie.


Nature | 2011

Ecology drives a global network of gene exchange connecting the human microbiome

Chris S. Smillie; Mark B. Smith; Jonathan Friedman; Otto X. Cordero; Lawrence A. David; Eric J. Alm

Horizontal gene transfer (HGT), the acquisition of genetic material from non-parental lineages, is known to be important in bacterial evolution. In particular, HGT provides rapid access to genetic innovations, allowing traits such as virulence, antibiotic resistance and xenobiotic metabolism to spread through the human microbiome. Recent anecdotal studies providing snapshots of active gene flow on the human body have highlighted the need to determine the frequency of such recent transfers and the forces that govern these events. Here we report the discovery and characterization of a vast, human-associated network of gene exchange, large enough to directly compare the principal forces shaping HGT. We show that this network of 10,770 unique, recently transferred (more than 99% nucleotide identity) genes found in 2,235 full bacterial genomes, is shaped principally by ecology rather than geography or phylogeny, with most gene exchange occurring between isolates from ecologically similar, but geographically separated, environments. For example, we observe 25-fold more HGT between human-associated bacteria than among ecologically diverse non-human isolates (P = 3.0 × 10−270). We show that within the human microbiome this ecological architecture continues across multiple spatial scales, functional classes and ecological niches with transfer further enriched among bacteria that inhabit the same body site, have the same oxygen tolerance or have the same ability to cause disease. This structure offers a window into the molecular traits that define ecological niches, insight that we use to uncover sources of antibiotic resistance and identify genes associated with the pathology of meningitis and other diseases.


Nature | 2016

Mobile genes in the human microbiome are structured from global to individual scales

Ilana Lauren Brito; S. Yilmaz; Katherine H. Huang; Liyi Xu; Stacy D. Jupiter; Aaron P. Jenkins; W. Naisilisili; Manu Tamminen; Chris S. Smillie; J. R. Wortman; B. W. Birren; Ramnik J. Xavier; Paul C. Blainey; Avtar Singh; Dirk Gevers; Eric J. Alm

Recent work has underscored the importance of the microbiome in human health, and has largely attributed differences in phenotype to differences in the species present among individuals. However, mobile genes can confer profoundly different phenotypes on different strains of the same species. Little is known about the function and distribution of mobile genes in the human microbiome, and in particular whether the gene pool is globally homogenous or constrained by human population structure. Here, we investigate this question by comparing the mobile genes found in the microbiomes of 81 metropolitan North Americans with those of 172 agrarian Fiji islanders using a combination of single-cell genomics and metagenomics. We find large differences in mobile gene content between the Fijian and North American microbiomes, with functional variation that mirrors known dietary differences such as the excess of plant-based starch degradation genes found in Fijian individuals. Notably, we also observed differences between the mobile gene pools of neighbouring Fijian villages, even though microbiome composition across villages is similar. Finally, we observe high rates of recombination leading to individual-specific mobile elements, suggesting that the abundance of some genes may reflect environmental selection rather than dispersal limitation. Together, these data support the hypothesis that human activities and behaviours provide selective pressures that shape mobile gene pools, and that acquisition of mobile genes is important for colonizing specific human populations.


Mbio | 2015

Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors

Mark B. Smith; Andrea M. Rocha; Chris S. Smillie; Scott W. Olesen; Charles J. Paradis; Liyou Wu; James H. Campbell; Julian L. Fortney; Tonia L. Mehlhorn; Kenneth Lowe; Jennifer E. Earles; Jana Randolph Phillips; Steve M. Techtmann; Dominique Joyner; Dwayne A. Elias; Kathryn L. Bailey; Richard A. Hurt; Sarah P. Preheim; Matthew C. Sanders; Joy Yang; Marcella A. Mueller; Scott C. Brooks; David B. Watson; Ping Zhang; Zhili He; Eric A. Dubinsky; Paul D. Adams; Adam P. Arkin; Matthew W. Fields; Jizhong Zhou

ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. IMPORTANCE Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.


Nature Communications | 2017

Unraveling the processes shaping mammalian gut microbiomes over evolutionary time

Mathieu Groussin; Florent Mazel; Jon G. Sanders; Chris S. Smillie; Sébastien Lavergne; Wilfried Thuiller; Eric J. Alm

Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution.


PLOS Computational Biology | 2017

Two dynamic regimes in the human gut microbiome

Sean M. Gibbons; Sean M. Kearney; Chris S. Smillie; Eric J. Alm

The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.


Nature microbiology | 2016

The Microbial Olympics 2016

Michaeline B. Nelson; Alexander B. Chase; Jennifer B. H. Martiny; Roman Stocker; Jen Nguyen; Karen Lloyd; Reid T. Oshiro; Daniel B. Kearns; Johannes P. Schneider; Peter Ringel; Marek Basler; Christine Olson; Helen E. Vuong; Elaine Y. Hsiao; Benjamin R.K. Roller; Martin Ackermann; Chris S. Smillie; Diana Chien; Eric J. Alm; Andrew J. Jermy

Following the success of the inaugural games, the Microbial Olympics return with a new series of events and microbial competitors. The games may have moved to a new hosting venue, but the dedication to training, fitness, competition (and yes, education and humour) lives on.


PubMed Central | 2012

A framework for human microbiome research

Jonathan Friedman; Chris S. Smillie; Eric J. Alm

Collaboration


Dive into the Chris S. Smillie's collaboration.

Top Co-Authors

Avatar

Eric J. Alm

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan Friedman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark B. Smith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam P. Arkin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea M. Rocha

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge