Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christa Kühn is active.

Publication


Featured researches published by Christa Kühn.


Mammalian Genome | 1997

A medium-density genetic linkage map of the bovine genome

W. Barendse; D. Vaiman; Stephen J. Kemp; Yoshikazu Sugimoto; S. M. Armitage; J. L. Williams; H. S. Sun; A. Eggen; Morris Agaba; S. A. Aleyasin; Mark Band; M. D. Bishop; J. Buitkamp; K. Byrne; F. Collins; L. Cooper; W. Coppettiers; B. Denys; R. D. Drinkwater; K. Easterday; C. Elduque; Sean Ennis; G. Erhardt; L. Ferretti; N. Flavin; Q. Gao; Michel Georges; R. Gurung; B. Harlizius; G. Hawkins

A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are assigned to chromosomes, and all are orientated with regards to the centromere. There is little overall difference in the lengths of the bull and cow linkage maps although there are individual differences between maps of chromosomes. One hundred and sixty polymorphisms are in or near genes, and the resultant genome-wide comparative analyses indicate that while there is greater conservation of synteny between cattle and humans compared with mice, the conservation of gene order between cattle and humans is much less than would be expected from the conservation of synteny. This map provides a basis for high-resolution mapping of the bovine genome with physical resources such as Yeast and Bacterial Artificial Chromosomes as well as providing the underpinning for the interpolation of information from the Human Genome Project.USDA-MARC family and data for validating this family. P. Creighton, C. Skidmore, T. Holm, and A. Georgoudis provided some validation data for the BOVMAP families. R. Fries, S. Johnson, S. Solinas Toldo, and A. Mezzelani kindly made some of their FISH assignments available before publication. We wish to thank all those researchers who kindly sent us probes and DNA primers.


Genetics | 2009

Dissection of Genetic Factors Modulating Fetal Growth in Cattle Indicates a Substantial Role of the Non-SMC Condensin I Complex, Subunit G (NCAPG) Gene

Annett Eberlein; Akiko Takasuga; Kouji Setoguchi; Ralf Pfuhl; Krzysztof Flisikowski; Ruedi Fries; Norman Klopp; Rainer Fürbass; Rosemarie Weikard; Christa Kühn

The increasing evidence of fetal developmental effects on postnatal life, the still unknown fetal growth mechanisms impairing offspring generated by somatic nuclear transfer techniques, and the impact on stillbirth and dystocia in conventional reproduction have generated increasing attention toward mammalian fetal growth. We identified a highly significant quantitative trait locus (QTL) affecting fetal growth on bovine chromosome 6 in a specific resource population, which was set up by consistent use of embryo transfer and foster mothers and, thus, enabled dissection of fetal-specific genetic components of fetal growth. Merging our data with results from other cattle populations differing in historical and geographical origin and with comparative data from human whole-genome association mapping suggests that a nonsynonymous polymorphism in the non-SMC condensin I complex, subunit G (NCAPG) gene, NCAPG c.1326T>G, is the potential cause of the identified QTL resulting in divergent bovine fetal growth. NCAPG gene expression data in fetal placentomes with different NCAPG c.1326T>G genotypes, which are in line with recent results about differential NCAPG expression in placentomes from studies on assisted reproduction techniques, indicate that the NCAPG locus may give valuable information on the specific mechanisms regulating fetal growth in mammals.


Genetics Selection Evolution | 2003

Combined analysis of data from two granddaughter designs: A simple strategy for QTL confirmation and increasing experimental power in dairy cattle

Jörn Bennewitz; Norbert Reinsch; Cécile Grohs; Hubert Levéziel; Alain Malafosse; Hauke Thomsen; N. Xu; Christian Looft; Christa Kühn; Gudrun A. Brockmann; Manfred Schwerin; Christina Weimann; S. Hiendleder; G. Erhardt; I. Medjugorac; Ingolf Russ; M. Förster; Bertram Brenig; F. Reinhardt; Reinhard Reents; Gottfried Averdunk; Jürgen Blümel; Didier Boichard; E. Kalm

A joint analysis of five paternal half-sib Holstein families that were part of two different granddaughter designs (ADR- or Inra-design) was carried out for five milk production traits and somatic cell score in order to conduct a QTL confirmation study and to increase the experimental power. Data were exchanged in a coded and standardised form. The combined data set (JOINT-design) consisted of on average 231 sires per grandsire. Genetic maps were calculated for 133 markers distributed over nine chromosomes. QTL analyses were performed separately for each design and each trait. The results revealed QTL for milk production on chromosome 14, for milk yield on chromosome 5, and for fat content on chromosome 19 in both the ADR- and the Inra-design (confirmed within this study). Some QTL could only be mapped in either the ADR- or in the Inra-design (not confirmed within this study). Additional QTL previously undetected in the single designs were mapped in the JOINT-design for fat yield (chromosome 19 and 26), protein yield (chromosome 26), protein content (chromosome 5), and somatic cell score (chromosome 2 and 19) with genomewide significance. This study demonstrated the potential benefits of a combined analysis of data from different granddaughter designs.


Mammalian Genome | 2001

A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine Chromosome 14

Christian Looft; Norbert Reinsch; Christina Karall-Albrecht; Sven Paul; Maren Brink; Hauke Thomsen; Gudrun A. Brockmann; Christa Kühn; Manfred Schwerin; E. Kalm

As part of a genome scan, ESTs derived from mammary gland tissue of a lactating cow were used as candidate genes for quantitative trait loci (QTL), affecting milk production traits. Resource families were genotyped with 247 microsatellite markers and 4 polymorphic ESTs. It was shown by linkage analysis that one of these ESTs, KIEL_E8, mapped to the centromeric region of bovine Chromosome (Chr) 14. Regression analysis revealed the presence of a QTL, with significant effect on milk production, in this chromosome region, and analysis of variance showed no significant interaction of marker genotype and family. The estimated significant differences between homozygous marker genotypes were 140 kg milk, −5.02 kg fat yield, and 2.58 kg protein yield for the first 100 days of lactation. Thus, there was strong evidence for a complete or nearly complete linkage disequilibrium between KIEL_E8 and the QTL. To identify the biological function of KIEL_E8, we extended the sequence for 869 bp by 5′-RACE. A 560-bp fragment of this shows a 90.9% similarity to a gene encoding a cysteine- and histidine-rich cytoplasmic protein in mouse. Although such a protein may have a regulatory function for lactation and a linkage disequilibrium between the EST marker and the QTL has been observed, it remains to be elucidated whether they are identical or not. Nevertheless, KIEL_E8 will be an efficient marker to perform marker-assisted selection in the Holstein-Friesian population.


Animal Genetics | 2013

A genome-wide association study indicates LCORL/NCAPG as a candidate locus for withers height in German Warmblood horses

Jens Tetens; Philipp Widmann; Christa Kühn; G. Thaller

A genome-wide association scan for loci affecting withers height was conducted in 782 German Warmblood stallions, which were genotyped using the Illumina EquineSNP50 Bead Chip. A principal components approach was applied to correct for population structure. The analysis revealed a single major QTL on ECA3 explaining ~18 per cent of the phenotypic variance, which is in concordance with recent reports from other horse populations. The LCORL/NCAPG locus represents a strong candidate gene for this QTL. This locus is among a small number that have consistently been identified to influence human height in several large meta-analyses. Furthermore, a mutation within the NCAPG gene was found to affect growth and body frame size in cattle. Together with the results of this study in German Warmbloods, these findings strongly indicate LCORL/NCAPG as a candidate locus for withers height in horses. Further studies are, however, needed to confirm this.


Physiological Genomics | 2010

Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition

Rosemarie Weikard; Elisabeth Altmaier; Karsten Suhre; Klaus M. Weinberger; H.M. Hammon; Elke Albrecht; Kouji Setoguchi; Akiko Takasuga; Christa Kühn

Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.


Animal Genetics | 2011

The SNP c.1326T>G in the non‐SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle

K. Setoguchi; T. Watanabe; Rosemarie Weikard; Elke Albrecht; Christa Kühn; A. Kinoshita; Yoshikazu Sugimoto; Akiko Takasuga

Recently, we had located a bovine carcass weight QTL, CW-2, to a 591-kb interval on BTA6 and have identified the SNP c.1326T>G in the NCAPG (non-SMC condensin I complex, subunit G) gene that leads to the amino acid change p.Ile442Met in the NCAPG protein, which is a candidate causative variation. Here, we examined the association of the NCAPG:c.1326T>G locus with linear skeletal measurements of growth-associated traits during adolescence, which is a period of intensive growth, using two historically and geographically distant cattle populations: 792 Japanese Black steers and 161 F(2) bulls of an experimental cross from Charolais and German Holstein. In both populations, the SNP NCAPG:c.1326T>G was associated with each component of body frame size: height, length and width at puberty. The associations of CW-2 with height- and length-associated traits were observed at an earlier growth period compared to the associations with thickness- and width-associated traits, indicating that the primary effect of the CW-2 QTL may possibly be exerted on skeletal growth. The significant associations of the NCAPG:c.1326T>G locus with growth-associated skeletal measurements are similar to the effects of the syntenic region on human chromosome 4 that are associated with adult height in humans, supporting the hypothesis that CW-2 is analogous to the human locus and pointing to a conserved growth-associated locus or chromosomal region present in both species.


Biology of Reproduction | 2006

Bovine NALP5, NALP8, and NALP9 Genes: Assignment to a QTL Region and the Expression in Adult Tissues, Oocytes, and Preimplantation Embryos

Siriluck Ponsuksili; Ronald M. Brunner; Tom Goldammer; Christa Kühn; Christina Walz; S. Chomdej; Dawit Tesfaye; Karl Schellander; Klaus Wimmers; Manfred Schwerin

Abstract A 3204-bp full-length cDNA of bovine NALP9 was cloned and its genomic organization was analyzed. The 2988-bp open reading frame covers 9 exons and encodes a deduced protein of 996 amino acids containing Pyrin, Nacht and leucine-rich repeat domains like the human NALP gene family members. Mapping with the WGRH5000 panel and fluorescence in situ hybridization assigned NALP9 in close vicinity to BM2078 (LOD score 25.71; distance 0.0 cR5000) on bovine chromosome 18, BTA18q25-q26, within a previously identified QTL region for reproductive traits flanked by the bovine marker BM2078 and TGLA227. BAC contig analysis revealed that NALP9, NALP8, and NALP5 map in this QTL region. Temporospatial expression of these members of the NALP gene family was monitored. Among the adult tissues examined, transcripts of NALP8 and NALP9 were detected exclusively in testis and ovary, whereas transcripts of the NALP5 gene are limited to the ovary. The transcripts of NALP9, NALP8, and NALP5 were detected in oocytes before and after in vitro maturation and with a gradual decline from 2-cell to 8-cell stage, suggesting no reactivation at the time of bovine maternal to embryonic transition. Assignment to a QTL region for reproductive traits and preferential expression of NALP9, NALP8, and NALP5 in oocyte, germinal lineage, and gonad cells may suggest their functional relevance to reproduction and possible contribution to phenotypic variation.


Journal of Dairy Science | 2010

Differences in milk production, glucose metabolism, and carcass composition of 2 Charolais × Holstein F2 families derived from reciprocal paternal and maternal grandsire crosses1

H.M. Hammon; Cornelia C. Metges; André Schulz; Peter Junghans; Julia Steinhoff; Falk Schneider; Ralf Pfuhl; Rupert Bruckmaier; Rosemarie Weikard; Christa Kühn

Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.


Mammalian Genome | 2001

Isolation and characterization of hepatic and intestinal expressed sequence tags potentially involved in trait differentiation between cows of different metabolic type

Ute Dorroch; Tom Goldammer; Ronald M. Brunner; Srivanas R. Kata; Christa Kühn; James E. Womack; Manfred Schwerin

Abstract. mRNA differential display was applied to identify hepatic and intestinal expressed sequence tags (ESTs) in lactating cows of different metabolic types (milk type, meat/milk type, meat type) that are potentially associated with energy turnover and involved in the regulation of these processes. Altogether, 277 ESTs (liver: 161, intestine: 116) were identified. For 150 transcripts (liver: 99, intestine: 51), the sequences showed similarity to previously described genes and ESTs. Many of these homologous sequences are reported to be involved in hepatic metabolism. Ninety-four ESTs (liver: 43, intestine: 51) did not match with any database entries. Semi-quantitative RT-PCR revealed quantitative differences in transcript represented by randomly chosen ESTs in liver samples of animals of the Holstein and Charolais breeds. One hundred twenty-two ESTs were mapped physically by using a bovine-hamster somatic cell hybrid panel (SCP) and a 5000-rad bovine whole genome radiation hybrid panel (WGRH). These ESTs were assigned to the bovine syntenic groups and positioned in the recently established RH-based ordered comparative map of the cattle and human genomes. The mapped, differentially expressed sequence tags are a useful prerequisite for cloning of genetic variation underlying economic traits.

Collaboration


Dive into the Christa Kühn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge